Zhang Rongchun, Nishiyama Yusuke, Sun Pingchuan, Ramamoorthy Ayyalusamy
Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan.
J Magn Reson. 2015 Mar;252:55-66. doi: 10.1016/j.jmr.2014.12.010. Epub 2015 Jan 6.
The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY4(1)4, for the fp-RFDR pulse sequence employed in 2D (1)H/(1)H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY4(1)2, XY4(1)3, XY4(1)4, and XY8(1)4 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T(10)T(2,±2), T(1,±1)T(2,±1), etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY4(1)4 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp-RFDR are also analyzed using numerical simulations for various phase cycles. Results obtained via numerical simulations are in excellent agreement with ultrafast MAS experimental results from the powder samples of glycine and l-alanine.
有限脉冲射频驱动偶极重耦合(fp-RFDR)脉冲序列用于魔角旋转(MAS)下的二维同核化学位移相关实验。最近的一项研究表明,在超快MAS条件下的二维(1)H/(1)H单量子/单量子相关实验中,使用短相位循环XY4及其超循环XY4(1)4用于fp-RFDR脉冲序列具有优势。在本研究中,我们报告了对XY4、XY4(1)2、XY4(1)3、XY4(1)4和XY8(1)4相位循环在10至100 kHz不同旋转速度下的偶极重耦合效率的综合分析。理论计算表明,仅当使用基本的XY4相位循环时,在重耦合的同核偶极耦合哈密顿量中才存在二阶项(T(10)T(2,±2)、T(1,±1)T(2,±1)等),这使得在超快MAS条件下有利于质子 - 质子磁化转移。还发现fp-RFDR的重耦合效率相当依赖于占空比(τ180/τR)以及同核偶极耦合的强度。在本研究中研究的所有基于XY的相位循环中,纵向磁化转移速率随fp-RFDR的占空比线性增加。针对化学位移偏移和射频场不均匀性效应检查不同相位循环的性能表明,XY4(1)4是最耐受的相位循环,而最短的相位循环XY4在慢旋转速度下最有效地抑制了射频场不均匀性效应。我们的结果表明,随着MAS速度增加fp-RFDR重耦合效率的差异减小,而超快(>60 kHz)旋转速度是有利的,因为它重耦合大量的同核偶极耦合,因此能够实现快速磁化交换。还使用数值模拟分析了各种相位循环在fp-RFDR有效哈密顿量中各种相互作用之间的高阶项和交叉项的影响。通过数值模拟获得的结果与甘氨酸和L-丙氨酸粉末样品的超快MAS实验结果非常吻合。