Suppr超能文献

通过随机微扰方法检测共发生突变来预测基因网络的脆弱性和弹性。

Frailness and resilience of gene networks predicted by detection of co-occurring mutations via a stochastic perturbative approach.

机构信息

Department of Physics and Astronomy, University of Bologna, Bologna, 40127, Italy.

National Institute for Nuclear Physics (INFN), Bologna, 40127, Italy.

出版信息

Sci Rep. 2020 Feb 14;10(1):2643. doi: 10.1038/s41598-020-59036-w.

Abstract

In recent years complex networks have been identified as powerful mathematical frameworks for the adequate modeling of many applied problems in disparate research fields. Assuming a Master Equation (ME) modeling the exchange of information within the network, we set up a perturbative approach in order to investigate how node alterations impact on the network information flow. The main assumption of the perturbed ME (pME) model is that the simultaneous presence of multiple node alterations causes more or less intense network frailties depending on the specific features of the perturbation. In this perspective the collective behavior of a set of molecular alterations on a gene network is a particularly adapt scenario for a first application of the proposed method, since most diseases are neither related to a single mutation nor to an established set of molecular alterations. Therefore, after characterizing the method numerically, we applied as a proof of principle the pME approach to breast cancer (BC) somatic mutation data downloaded from Cancer Genome Atlas (TCGA) database. For each patient we measured the network frailness of over 90 significant subnetworks of the protein-protein interaction network, where each perturbation was defined by patient-specific somatic mutations. Interestingly the frailness measures depend on the position of the alterations on the gene network more than on their amount, unlike most traditional enrichment scores. In particular low-degree mutations play an important role in causing high frailness measures. The potential applicability of the proposed method is wide and suggests future development in the control theory context.

摘要

近年来,复杂网络已被确定为许多不同研究领域的应用问题的有效数学框架。假设一个主方程(ME)来模拟网络内部的信息交换,我们建立了一个微扰方法,以研究节点变化如何影响网络信息流。受扰主方程(pME)模型的主要假设是,多个节点变化的同时存在会根据扰动的具体特征导致或多或少的网络脆弱性。从这个角度来看,一组分子变化对基因网络的集体行为是该方法首次应用的一个特别适应的场景,因为大多数疾病既与单个突变无关,也与既定的分子变化集无关。因此,在数值上对该方法进行了特征描述之后,我们将 pME 方法应用于从癌症基因组图谱(TCGA)数据库下载的乳腺癌(BC)体细胞突变数据,作为原理证明。对于每个患者,我们测量了蛋白质-蛋白质相互作用网络中 90 多个显著子网的网络脆弱性,其中每个扰动由患者特异性体细胞突变定义。有趣的是,脆弱性度量取决于突变在基因网络中的位置,而不是它们的数量,这与大多数传统的富集分数不同。特别是低度数突变在导致高脆弱性度量方面起着重要作用。该方法的潜在适用性很广泛,并建议在控制理论方面进行进一步的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f12/7021762/b81b316fc66c/41598_2020_59036_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验