Suppr超能文献

通过人工智能进行胃镜检查诊断慢性萎缩性胃炎。

Diagnosing chronic atrophic gastritis by gastroscopy using artificial intelligence.

机构信息

Department of Gastroenterology, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, China.

Department of Gastroenterology, Shanxi Provincial People's Hospital, Taiyuan, China.

出版信息

Dig Liver Dis. 2020 May;52(5):566-572. doi: 10.1016/j.dld.2019.12.146. Epub 2020 Feb 13.

Abstract

BACKGROUND

The sensitivity of endoscopy in diagnosing chronic atrophic gastritis is only 42%, and multipoint biopsy, despite being more accurate, is not always available.

AIMS

This study aimed to construct a convolutional neural network to improve the diagnostic rate of chronic atrophic gastritis.

METHODS

We collected 5470 images of the gastric antrums of 1699 patients and labeled them with their pathological findings. Of these, 3042 images depicted atrophic gastritis and 2428 did not. We designed and trained a convolutional neural network-chronic atrophic gastritis model to diagnose atrophic gastritis accurately, verified by five-fold cross-validation. Moreover, the diagnoses of the deep learning model were compared with those of three experts.

RESULTS

The diagnostic accuracy, sensitivity, and specificity of the convolutional neural network-chronic atrophic gastritis model in diagnosing atrophic gastritis were 0.942, 0.945, and 0.940, respectively, which were higher than those of the experts. The detection rates of mild, moderate, and severe atrophic gastritis were 93%, 95%, and 99%, respectively.

CONCLUSION

Chronic atrophic gastritis could be diagnosed by gastroscopic images using the convolutional neural network-chronic atrophic gastritis model. This may greatly reduce the burden on endoscopy physicians, simplify diagnostic routines, and reduce costs for doctors and patients.

摘要

背景

内镜诊断慢性萎缩性胃炎的敏感性仅为 42%,多点活检虽然更准确,但并非总是可行。

目的

本研究旨在构建卷积神经网络以提高慢性萎缩性胃炎的诊断率。

方法

我们收集了 1699 名患者的胃窦部 5470 张图像,并对其病理发现进行了标记。其中 3042 张图像显示萎缩性胃炎,2428 张图像未显示。我们设计并训练了一个卷积神经网络-慢性萎缩性胃炎模型,通过五重交叉验证来准确诊断萎缩性胃炎,此外,还将深度学习模型的诊断结果与三位专家的诊断结果进行了比较。

结果

卷积神经网络-慢性萎缩性胃炎模型诊断萎缩性胃炎的准确性、敏感性和特异性分别为 0.942、0.945 和 0.940,均高于专家。轻度、中度和重度萎缩性胃炎的检出率分别为 93%、95%和 99%。

结论

可以使用卷积神经网络-慢性萎缩性胃炎模型通过胃镜图像诊断慢性萎缩性胃炎。这可能会大大减轻内镜医生的负担,简化诊断程序,并降低医生和患者的成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验