Suppr超能文献

钢中二维碳化铁在累积变形下的可控生长

Controllable growth of two-dimensional iron carbide in steels under accumulation deformation.

作者信息

Zhang Yong, Xia Zhenhai, Liu Fang, Qin Zuoxiang, Lu Xing

机构信息

School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028, China; Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, United States.

Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, United States.

出版信息

Micron. 2020 May;132:102794. doi: 10.1016/j.micron.2019.102794. Epub 2020 Feb 8.

Abstract

Two dimensional (2D) materials such as metal carbides are attractive owing to their unique structures and various potential applications. Although various synthetic methods have been developed for fabrication of 2D materials, it is still challenging to directly synthesize 2D carbides. Herein, we propose a new approach to convert in-situ 3D iron carbide into defect free 2D one in conventional carbon steels by controlling the deformation accumulation to drive atomic rearrangement within the carbides. Density functional theory (DFT) calculation demonstrated that ring-like, helical and other morphological 2D iron carbides can be formed under 30 % compressive deformation. Experimentally, the strength of 2D hexagonal iron carbide is estimated to be 12 GPa-18 GPa, which is 4-5 times that of original orthorhombic iron carbide (3.0 GPa-3.5 GPa) and the in-situ grown 2D carbide results in 176 % increase in strength of the steels. The first principles simulations show that the 2D iron carbides can be converted through its multiple slip systems under both the compressive and tensile pressure. This approach may open a new door for in-situ controllable growth of various 2D materials owning to rich metallic bond variety, slip system multiplicity and deformation diversity in metallic alloys.

摘要

诸如金属碳化物之类的二维(2D)材料因其独特的结构和各种潜在应用而备受关注。尽管已经开发出各种用于制备二维材料的合成方法,但直接合成二维碳化物仍然具有挑战性。在此,我们提出了一种新方法,通过控制变形累积以驱动碳化物内的原子重排,将传统碳钢中原位生成的三维碳化铁转化为无缺陷的二维碳化铁。密度泛函理论(DFT)计算表明,在30%的压缩变形下可形成环状、螺旋状及其他形态的二维碳化铁。实验表明,二维六方碳化铁的强度估计为12 GPa - 18 GPa,是原始正交碳化铁(3.0 GPa - 3.5 GPa)强度的4至5倍,且原位生长的二维碳化物使钢的强度提高了176%。第一性原理模拟表明,二维碳化铁在压缩和拉伸压力下均可通过其多个滑移系进行转变。由于金属合金中丰富的金属键种类、滑移系多样性和变形多样性,这种方法可能为各种二维材料的原位可控生长打开一扇新的大门。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验