Suppr超能文献

基于 mito-liposomal 金纳米粒子载体增强生物自发荧光。

Enhancement of the biological autoluminescence by mito-liposomal gold nanoparticle nanocarriers.

机构信息

Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia.

出版信息

J Photochem Photobiol B. 2020 Mar;204:111812. doi: 10.1016/j.jphotobiol.2020.111812. Epub 2020 Feb 12.

Abstract

One of the most important barriers to the detection of the biological autoluminescence (BAL) from biosystems using a non-invasive monitoring approach, in both the in vivo and the in vitro applications, is its very low signal intensity (< 1000 photons/s/cm). Experimental studies have revealed that the formation of electron excited species, as a result of reactions of biomolecules with reactive oxygen species (ROS), is the principal biochemical source of the BAL which occurs during the cell metabolism. Mitochondria, as the most important organelles involved in oxidative metabolism, are considered to be the main intracellular BAL source. Hence, in order to achieve the BAL enhancement via affecting the mitochondria, we prepared a novel mitochondrial-liposomal nanocarrier with two attractive features including the intra-liposomal gold nanoparticle synthesizing ability and the mitochondria penetration capability. The results indicate that these nanocarriers (with the average size of 131.1 ± 20.1 nm) are not only able to synthesize the gold nanoparticles within them (with the average size of 15 nm) and penetrate into the U2OS cell mitochondria, but they are also able to amplify the BAL signals. Our results open new possibilities for the use of biological autoluminescence as a non-invasive and label-free monitoring method in nanomedicine and biotechnology.

摘要

生物系统的生物自发光(BAL)的检测,尤其是使用非侵入性监测方法,在体内和体外应用中,最重要的障碍之一是其非常低的信号强度(<1000 光子/s/cm)。实验研究表明,生物分子与活性氧(ROS)反应形成的电子激发态物质,是细胞代谢过程中发生的 BAL 的主要生化来源。线粒体作为参与氧化代谢的最重要细胞器,被认为是细胞内 BAL 的主要来源。因此,为了通过影响线粒体来实现 BAL 增强,我们制备了一种新型的线粒体脂质体纳米载体,具有两个有吸引力的特点,包括在脂质体内合成金纳米颗粒的能力和穿透线粒体的能力。结果表明,这些纳米载体(平均尺寸为 131.1±20.1nm)不仅能够在其中合成金纳米颗粒(平均尺寸为 15nm)并穿透 U2OS 细胞线粒体,而且还能够放大 BAL 信号。我们的结果为将生物自发光作为一种非侵入性和无标记的监测方法在纳米医学和生物技术中的应用开辟了新的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验