Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 734-8551, Japan.
Department of Neurosurgery, Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, Shimane, 693-0068, Japan.
Sci Rep. 2024 May 2;14(1):10104. doi: 10.1038/s41598-024-60789-x.
We aimed to develop a new artificial intelligence software that can automatically extract and measure the volume of white matter hyperintensities (WMHs) in head magnetic resonance imaging (MRI) using only thick-slice fluid-attenuated inversion recovery (FLAIR) sequences from multiple centers. We enrolled 1092 participants in Japan, comprising the thick-slice Private Dataset. Based on 207 randomly selected participants, neuroradiologists annotated WMHs using predefined guidelines. The annotated images of participants were divided into training (n = 138) and test (n = 69) datasets. The WMH segmentation model comprised a U-Net ensemble and was trained using the Private Dataset. Two other models were trained for validation using either both thin- and thick-slice MRI datasets or the thin-slice dataset alone. The voxel-wise Dice similarity coefficient (DSC) was used as the evaluation metric. The model trained using only thick-slice MRI showed a DSC of 0.820 for the test dataset, which is comparable to the accuracy of human readers. The model trained with the additional thin-slice dataset showed only a slightly improved DSC of 0.822. This automatic WMH segmentation model comprising a U-Net ensemble trained on a thick-slice FLAIR MRI dataset is a promising new method. Despite some limitations, this model may be applicable in clinical practice.
我们旨在开发一种新的人工智能软件,该软件仅使用来自多个中心的厚切片液体衰减反转恢复(FLAIR)序列,即可自动提取和测量头部磁共振成像(MRI)中的脑白质高信号(WMHs)体积。我们在日本招募了 1092 名参与者,组成了厚切片私有数据集。基于 207 名随机选择的参与者,神经放射科医生使用预定义的指南对 WMHs 进行了注释。参与者的注释图像被分为训练(n=138)和测试(n=69)数据集。WMH 分割模型由 U-Net 集合组成,并使用私有数据集进行训练。另外两个模型使用薄切片和厚切片 MRI 数据集或仅使用薄切片数据集进行训练,以进行验证。体素级别的 Dice 相似系数(DSC)用作评估指标。仅使用厚切片 MRI 训练的模型在测试数据集上的 DSC 为 0.820,与人类读者的准确性相当。使用额外的薄切片数据集训练的模型仅显示出稍微提高的 DSC 为 0.822。这个由 U-Net 集合组成的自动 WMH 分割模型,在厚切片 FLAIR MRI 数据集上进行训练,是一种很有前途的新方法。尽管存在一些限制,但该模型可能适用于临床实践。