Suppr超能文献

用于工艺优化的无细胞表达系统的代谢谱分析

Metabolic Profiling of Cell-Free Expression Systems for Process Optimization.

作者信息

Miguez April M, McNerney Monica P, Styczynski Mark P

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, USA.

出版信息

Ind Eng Chem Res. 2019 Dec 18;58(50):22472-22482. doi: 10.1021/acs.iecr.9b03565. Epub 2019 Sep 13.

Abstract

Biotechnology has transformed the production of various chemicals and pharmaceuticals due to its efficient and selective processes, but it is inherently limited by its use of live cells as "biocatalysts." Cell-free expression (CFE) systems, which use a protein lysate isolated from whole cells, have the potential to overcome these challenges and broaden the scope of biomanufacturing. Implementation of CFE systems at scale will require determining clear markers of lysate activity and developing supplementation approaches that compensate for potential variability across batches and experimental protocols. Towards this goal, we use metabolomics to relate lysate preparation and performance to metabolic activity. We show that lysate processing affects the metabolite makeup of lysates, and that lysate metabolite levels change over the course of a CFE reaction regardless of whether a target compound is produced. Finally, we use this information to develop ways to standardize lysate activity and to design an improved CFE system.

摘要

生物技术因其高效且具选择性的过程,已改变了各种化学品和药物的生产,但它本质上受限于将活细胞用作“生物催化剂”。无细胞表达(CFE)系统使用从全细胞中分离出的蛋白质裂解物,有潜力克服这些挑战并拓宽生物制造的范围。大规模实施CFE系统将需要确定裂解物活性的明确标志物,并开发补偿批次间和实验方案潜在变异性的补充方法。为实现这一目标,我们使用代谢组学将裂解物制备和性能与代谢活性联系起来。我们表明,裂解物处理会影响裂解物的代谢物组成,并且无论是否产生目标化合物,裂解物代谢物水平在CFE反应过程中都会发生变化。最后,我们利用这些信息开发标准化裂解物活性的方法,并设计一种改进的CFE系统。

相似文献

1
Metabolic Profiling of Cell-Free Expression Systems for Process Optimization.用于工艺优化的无细胞表达系统的代谢谱分析
Ind Eng Chem Res. 2019 Dec 18;58(50):22472-22482. doi: 10.1021/acs.iecr.9b03565. Epub 2019 Sep 13.
2
Metabolic Dynamics in -Based Cell-Free Systems.基于细胞的无细胞体系中的代谢动力学。
ACS Synth Biol. 2021 Sep 17;10(9):2252-2265. doi: 10.1021/acssynbio.1c00167. Epub 2021 Sep 3.
7
Cell-Free Expression System Derived from a Near-Minimal Synthetic Bacterium.无细胞表达系统源自近最小合成细菌。
ACS Synth Biol. 2023 Jun 16;12(6):1616-1623. doi: 10.1021/acssynbio.3c00114. Epub 2023 Jun 6.
10
Cell-Free Synthetic Biology for Pathway Prototyping.用于途径原型设计的无细胞合成生物学
Methods Enzymol. 2018;608:31-57. doi: 10.1016/bs.mie.2018.04.029. Epub 2018 Jun 27.

引用本文的文献

2
Cell-Free Gene Expression: Methods and Applications.无细胞基因表达:方法与应用
Chem Rev. 2025 Jan 8;125(1):91-149. doi: 10.1021/acs.chemrev.4c00116. Epub 2024 Dec 19.
4
Plasmid Crosstalk in Cell-Free Expression Systems.无细胞表达系统中的质粒串扰。
ACS Synth Biol. 2023 Oct 20;12(10):2843-2856. doi: 10.1021/acssynbio.3c00412. Epub 2023 Sep 27.
5
In Vitro Transcription-Translation in an Artificial Biomolecular Condensate.体外转录-翻译在人工生物分子凝聚体中。
ACS Synth Biol. 2023 Jul 21;12(7):2004-2014. doi: 10.1021/acssynbio.3c00069. Epub 2023 Jun 21.
6
What remains from living cells in bacterial lysate-based cell-free systems.基于细菌裂解物的无细胞系统中活细胞残留的物质。
Comput Struct Biotechnol J. 2023 May 24;21:3173-3182. doi: 10.1016/j.csbj.2023.05.025. eCollection 2023.
7
Optimising protein synthesis in cell-free systems, a review.无细胞系统中蛋白质合成的优化:综述
Eng Biol. 2021 Feb 21;5(1):10-19. doi: 10.1049/enb2.12004. eCollection 2021 Mar.
8
Systems biology-based analysis of cell-free systems.基于系统生物学的无细胞系统分析。
Curr Opin Biotechnol. 2022 Jun;75:102703. doi: 10.1016/j.copbio.2022.102703. Epub 2022 Mar 2.
10
Cell-Free Gene Expression Dynamics in Synthetic Cell Populations.细胞游离基因表达动力学在合成细胞群体中的研究。
ACS Synth Biol. 2022 Jan 21;11(1):205-215. doi: 10.1021/acssynbio.1c00376. Epub 2022 Jan 4.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验