Suppr超能文献

健康相关生活质量和脑瘫儿童上肢功能障碍:制定映射算法。

Health-related quality of life and upper-limb impairment in children with cerebral palsy: developing a mapping algorithm.

机构信息

Faculty of Health, Institute for Health Transformation, Deakin University, Geelong, Melbourne, Victoria, Australia.

Centre for Disability and Development Research, Australian Catholic University, Fitzroy, Melbourne, Victoria, Australia.

出版信息

Dev Med Child Neurol. 2020 Jul;62(7):854-860. doi: 10.1111/dmcn.14488. Epub 2020 Feb 16.

Abstract

AIM

To: (1) investigate the relationship between upper-limb impairment and health-related quality of life (HRQoL) for children with cerebral palsy and (2) develop a mapping algorithm from the Cerebral Palsy Quality of Life Questionnaire for Children (CPQoL-Child) onto the Child Health Utility 9D (CHU9D) measure.

METHOD

The associations between physical and upper-limb classifications and HRQoL of 76 children (40 females, 36 males) aged 6 to 15 years (mean age 9 years 7 months [SD 3y]) were assessed. Five statistical techniques were developed and tested, which predicted the CHU9D scores from the CPQoL-Child total/domain scores, age, and sex.

RESULTS

Most participants had mild impairments. The Manual Ability Classification System (MACS) level was significantly negatively correlated with CHU9D and CPQoL-Child (r=-0.388 and r=-0.464 respectively). There was a negative correlation between the Neurological Hand Deformity Classification (NHDC) and CPQoL-Child (r=-0.476, p<0.05). The generalized linear model with participation, pain domain, and age had the highest predictive accuracy.

INTERPRETATION

The weak negative correlations between classification levels and HRQoL measures may be explained by the restricted range of impairment levels of the participants. The MACS and NHDC explained the impact of upper-limb impairment on HRQoL better than the other classifications. The generalized linear model with participation, pain, and age is the suggested mapping algorithm. The suggested mapping algorithm will facilitate the use of CPQoL-Child for economic evaluation and can be used to conduct cost-utility analyses.

WHAT THIS PAPER ADDS

The Manual Ability Classification System and Neurological Hand Deformity Classification were the best predictors of health-related quality of life measures. Age and Cerebral Palsy Quality of Life Questionnaire for Children participation and pain domain scores can predict Child Health Utility 9D scores.

摘要

目的

(1)研究脑瘫儿童上肢功能障碍与健康相关生活质量(HRQoL)之间的关系,(2)制定从脑瘫儿童生活质量问卷(CPQoL-Child)到儿童健康效用 9 维度(CHU9D)的映射算法。

方法

评估了 76 名 6 至 15 岁(平均年龄 9 岁 7 个月[SD 3y])儿童的身体和上肢分类与 HRQoL 的相关性。开发并测试了 5 种统计技术,这些技术从 CPQoL-Child 总分/领域得分、年龄和性别预测 CHU9D 得分。

结果

大多数参与者的损伤程度较轻。手动能力分类系统(MACS)水平与 CHU9D 和 CPQoL-Child 呈显著负相关(r=-0.388 和 r=-0.464)。神经手畸形分类(NHDC)与 CPQoL-Child 呈负相关(r=-0.476,p<0.05)。包含参与度、疼痛域和年龄的广义线性模型具有最高的预测准确性。

解释

分类水平与 HRQoL 指标之间的弱负相关可能是由于参与者的损伤程度范围有限所致。MACS 和 NHDC 比其他分类更能解释上肢功能障碍对 HRQoL 的影响。包含参与度、疼痛和年龄的广义线性模型是建议的映射算法。建议的映射算法将促进 CPQoL-Child 在经济评估中的使用,并可用于进行成本效用分析。

本文增加内容

手动能力分类系统和神经手畸形分类是健康相关生活质量指标的最佳预测因子。年龄、脑瘫儿童生活质量问卷参与度和疼痛域评分可以预测儿童健康效用 9 维度评分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验