Department of, Departments of, Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
Tada Tomohiro Institute of Gastroenterology and Proctology, Saitama, Japan.
Dig Endosc. 2020 Nov;32(7):1057-1065. doi: 10.1111/den.13653. Epub 2020 Apr 1.
The prognosis for pharyngeal cancer is relatively poor. It is usually diagnosed in an advanced stage. Although the recent development of narrow-band imaging (NBI) and increased awareness among endoscopists have enabled detection of superficial pharyngeal cancer, these techniques are still not prevalent worldwide. Nevertheless, artificial intelligence (AI)-based deep learning has led to significant advancements in various medical fields. Here, we demonstrate the diagnostic ability of AI-based detection of pharyngeal cancer from endoscopic images in esophagogastroduodenoscopy.
We retrospectively collected 5403 training images of pharyngeal cancer from 202 superficial cancers and 45 advanced cancers from the Cancer Institute Hospital, Tokyo, Japan. Using these images, we developed an AI-based diagnostic system with convolutional neural networks. We prepared 1912 validation images from 35 patients with 40 pharyngeal cancers and 40 patients without pharyngeal cancer to evaluate our system.
Our AI-based diagnostic system correctly detected all pharyngeal cancer lesions (40/40) in the patients with cancer, including three small lesions smaller than 10 mm. For each image, the AI-based system correctly detected pharyngeal cancers in images obtained via NBI with a sensitivity of 85.6%, much higher sensitivity than that for images obtained via white light imaging (70.1%). The novel diagnostic system took only 28 s to analyze 1912 validation images.
The novel AI-based diagnostic system detected pharyngeal cancer with high sensitivity. It could facilitate early detection, thereby leading to better prognosis and quality of life for patients with pharyngeal cancers in the near future.
咽癌的预后相对较差,通常在晚期诊断。尽管窄带成像(NBI)的最新发展和内镜医生意识的提高使浅表性咽癌的检测成为可能,但这些技术在世界范围内仍未普及。然而,基于人工智能(AI)的深度学习已在各个医学领域取得了重大进展。在这里,我们展示了基于 AI 的咽癌内镜图像检测在食管胃十二指肠镜检查中的诊断能力。
我们回顾性地从日本东京癌症研究所的 202 例浅表性癌症和 45 例晚期癌症中收集了 5403 例咽癌的训练图像。使用这些图像,我们开发了一种基于卷积神经网络的 AI 诊断系统。我们从 35 名患者的 40 例咽癌和 40 名无咽癌患者中准备了 1912 例验证图像,以评估我们的系统。
我们的基于 AI 的诊断系统正确地检测到癌症患者所有的咽癌病变(40/40),包括三个小于 10 毫米的小病变。对于每个图像,基于 AI 的系统通过 NBI 获得的图像检测到咽癌的敏感性为 85.6%,明显高于通过白光成像获得的图像的敏感性(70.1%)。该新型诊断系统仅需 28 秒即可分析 1912 张验证图像。
新型基于 AI 的诊断系统对咽癌的检测具有很高的敏感性。它可以促进早期检测,从而为未来患有咽癌的患者带来更好的预后和生活质量。