Suppr超能文献

致力于建立一种针对阿尔茨海默病的血液衍生基因表达生物标志物。

Working Towards a Blood-Derived Gene Expression Biomarker Specific for Alzheimer's Disease.

机构信息

Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.

出版信息

J Alzheimers Dis. 2020;74(2):545-561. doi: 10.3233/JAD-191163.

Abstract

BACKGROUND

The typical approach to identify blood-derived gene expression signatures as a biomarker for Alzheimer's disease (AD) have relied on training classification models using AD and healthy controls only. This may inadvertently result in the identification of markers for general illness rather than being disease-specific.

OBJECTIVE

Investigate whether incorporating additional related disorders in the classification model development process can lead to the discovery of an AD-specific gene expression signature.

METHODS

Two types of XGBoost classification models were developed. The first used 160 AD and 127 healthy controls and the second used the same 160 AD with 6,318 upsampled mixed controls consisting of Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, bipolar disorder, schizophrenia, coronary artery disease, rheumatoid arthritis, chronic obstructive pulmonary disease, and cognitively healthy subjects. Both classification models were evaluated in an independent cohort consisting of 127 AD and 687 mixed controls.

RESULTS

The AD versus healthy control models resulted in an average 48.7% sensitivity (95% CI = 34.7-64.6), 41.9% specificity (95% CI = 26.8-54.3), 13.6% PPV (95% CI = 9.9-18.5), and 81.1% NPV (95% CI = 73.3-87.7). In contrast, the mixed control models resulted in an average of 40.8% sensitivity (95% CI = 27.5-52.0), 95.3% specificity (95% CI = 93.3-97.1), 61.4% PPV (95% CI = 53.8-69.6), and 89.7% NPV (95% CI = 87.8-91.4).

CONCLUSIONS

This early work demonstrates the value of incorporating additional related disorders into the classification model developmental process, which can result in models with improved ability to distinguish AD from a heterogeneous aging population. However, further improvement to the sensitivity of the test is still required.

摘要

背景

传统方法是通过使用 AD 患者和健康对照来训练分类模型,以识别血液来源的基因表达特征作为 AD 的生物标志物。这种方法可能会无意中识别出一般疾病的标志物,而不是疾病特异性的标志物。

目的

研究在分类模型开发过程中纳入其他相关疾病是否可以发现 AD 特异性基因表达特征。

方法

开发了两种类型的 XGBoost 分类模型。第一种模型使用了 160 名 AD 患者和 127 名健康对照者的数据,第二种模型使用了相同的 160 名 AD 患者数据,并将 6318 名混合对照者(包括帕金森病、多发性硬化症、肌萎缩侧索硬化症、双相情感障碍、精神分裂症、冠心病、类风湿关节炎、慢性阻塞性肺疾病和认知健康的受试者)进行了上采样。这两个分类模型都在一个包含 127 名 AD 患者和 687 名混合对照者的独立队列中进行了评估。

结果

AD 与健康对照组模型的平均灵敏度为 48.7%(95%CI=34.7-64.6),特异性为 41.9%(95%CI=26.8-54.3),阳性预测值为 13.6%(95%CI=9.9-18.5),阴性预测值为 81.1%(95%CI=73.3-87.7)。相比之下,混合对照组模型的平均灵敏度为 40.8%(95%CI=27.5-52.0),特异性为 95.3%(95%CI=93.3-97.1),阳性预测值为 61.4%(95%CI=53.8-69.6),阴性预测值为 89.7%(95%CI=87.8-91.4)。

结论

这项早期工作表明,在分类模型开发过程中纳入其他相关疾病具有重要价值,这可以提高模型区分 AD 与异质老年人群的能力。然而,仍然需要进一步提高测试的灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffb/7175937/415877fcc7c9/jad-74-jad191163-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验