Suppr超能文献

DMAP:一个用于识别新型药物重新定位候选药物的连接性图谱数据库。

DMAP: a connectivity map database to enable identification of novel drug repositioning candidates.

作者信息

Huang Hui, Nguyen Thanh, Ibrahim Sara, Shantharam Sandeep, Yue Zongliang, Chen Jake Y

出版信息

BMC Bioinformatics. 2015;16 Suppl 13(Suppl 13):S4. doi: 10.1186/1471-2105-16-S13-S4. Epub 2015 Sep 25.

Abstract

BACKGROUND

Drug repositioning is a cost-efficient and time-saving process to drug development compared to traditional techniques. A systematic method to drug repositioning is to identify candidate drug's gene expression profiles on target disease models and determine how similar these profiles are to approved drugs. Databases such as the CMAP have been developed recently to help with systematic drug repositioning.

METHODS

To overcome the limitation of connectivity maps on data coverage, we constructed a comprehensive in silico drug-protein connectivity map called DMAP, which contains directed drug-to-protein effects and effect scores. The drug-to-protein effect scores are compiled from all database entries between the drug and protein have been previously observed and provide a confidence measure on the quality of such drug-to-protein effects.

RESULTS

In DMAP, we have compiled the direct effects between 24,121 PubChem Compound ID (CID), which were mapped from 289,571 chemical entities recognized from public literature, and 5,196 reviewed Uniprot proteins. DMAP compiles a total of 438,004 chemical-to-protein effect relationships. Compared to CMAP, DMAP shows an increase of 221 folds in the number of chemicals and 1.92 fold in the number of ATC codes. Furthermore, by overlapping DMAP chemicals with the approved drugs with known indications from the TTD database and literature, we obtained 982 drugs and 622 diseases; meanwhile, we only obtained 394 drugs with known indication from CMAP. To validate the feasibility of applying new DMAP for systematic drug repositioning, we compared the performance of DMAP and the well-known CMAP database on two popular computational techniques: drug-drug-similarity-based method with leave-one-out validation and Kolmogorov-Smirnov scoring based method. In drug-drug-similarity-based method, the drug repositioning prediction using DMAP achieved an Area-Under-Curve (AUC) score of 0.82, compared with that using CMAP, AUC = 0.64. For Kolmogorov-Smirnov scoring based method, with DMAP, we were able to retrieve several drug indications which could not be retrieved using CMAP. DMAP data can be queried using the existing C2MAP server or downloaded freely at: http://bio.informatics.iupui.edu/cmaps

CONCLUSIONS

Reliable measurements of how drug affect disease-related proteins are critical to ongoing drug development in the genome medicine era. We demonstrated that DMAP can help drug development professionals assess drug-to-protein relationship data and improve chances of success for systematic drug repositioning efforts.

摘要

背景

与传统技术相比,药物重新定位是一种经济高效且节省时间的药物开发过程。药物重新定位的一种系统方法是在目标疾病模型上识别候选药物的基因表达谱,并确定这些谱与已批准药物的相似程度。诸如CMAP之类的数据库最近已被开发出来,以帮助进行系统的药物重新定位。

方法

为了克服连接性图谱在数据覆盖方面的局限性,我们构建了一个名为DMAP的综合计算机药物-蛋白质连接性图谱,其中包含直接的药物对蛋白质的作用及效应评分。药物对蛋白质的效应评分是根据先前观察到的药物与蛋白质之间的所有数据库条目汇编而成的,并对这种药物对蛋白质的效应质量提供了一种置信度度量。

结果

在DMAP中,我们汇编了24,121个PubChem化合物标识符(CID)之间的直接作用,这些CID是从公共文献中识别出的289,571个化学实体映射而来的,以及5,196个经过审查的Uniprot蛋白质。DMAP总共汇编了438,004个化学物质与蛋白质的效应关系。与CMAP相比,DMAP在化学物质数量上增加了221倍,在ATC代码数量上增加了1.92倍。此外,通过将DMAP化学物质与来自TTD数据库和文献的具有已知适应症的已批准药物进行重叠,我们获得了982种药物和622种疾病;同时,我们从CMAP中仅获得了394种具有已知适应症的药物。为了验证应用新的DMAP进行系统药物重新定位的可行性,我们在两种流行的计算技术上比较了DMAP和著名的CMAP数据库的性能:基于药物-药物相似性的留一法验证方法和基于Kolmogorov-Smirnov评分的方法。在基于药物-药物相似性的方法中,使用DMAP进行药物重新定位预测的曲线下面积(AUC)评分为0.82,而使用CMAP时,AUC = 0.64。对于基于Kolmogorov-Smirnov评分的方法,使用DMAP,我们能够检索到一些使用CMAP无法检索到的药物适应症。DMAP数据可以使用现有的C2MAP服务器进行查询,或在以下网址免费下载:http://bio.informatics.iupui.edu/cmaps

结论

在基因组医学时代,可靠地衡量药物如何影响疾病相关蛋白质对于正在进行的药物开发至关重要。我们证明了DMAP可以帮助药物开发专业人员评估药物与蛋白质的关系数据,并提高系统药物重新定位努力的成功机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f886/4597058/0483cd63273a/1471-2105-16-S13-S4-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验