Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada.
J Mater Chem B. 2020 Mar 4;8(9):1952-1959. doi: 10.1039/c9tb02728a.
Basal insulin therapy plays a key role in diabetes management. An ideal therapy should mimic the steady physiologic basal insulin secretion, and provide a peak-free, prolonged and steady insulin supply. Herein, a new drug carrier was designed by first PEGylating insulin and then incorporating the conjugate into layer-by-layer assembled films with tannic acid (TA). Because PEG-insulin and TA in the films were linked with reversible, dynamic hydrogen bonds, the films disintegrate gradually when soaked in aqueous solutions, and thus release PEG-insulin into the media. In vitro release tests revealed that the release of PEG-insulin follows a zero-order kinetics. Theoretical analysis based on the unique release mechanism also supports a zero-order kinetics. In vivo tests using a streptozotocin-induced diabetic rat model demonstrated that subcutaneous implantation of the film could maintain a steady plasma drug level and hence maintain a fasting blood glucose level (BGL) close to normal. The duration of action depends on the thickness of the film. Using a 50-bilayer film, fasting BGL was kept within the normoglycemic range for ∼16 days. Initial burst release, a severe problem for other release systems, was successfully avoided.
基础胰岛素治疗在糖尿病管理中起着关键作用。理想的治疗方法应模拟稳定的生理性基础胰岛素分泌,并提供无峰、持久和稳定的胰岛素供应。在此,我们通过首先对胰岛素进行聚乙二醇化,然后将其与单宁酸(TA)的层层组装膜结合,设计了一种新的药物载体。由于 PEG-胰岛素和薄膜中的 TA 之间通过可逆的动态氢键连接,因此当薄膜浸泡在水溶液中时会逐渐分解,从而将 PEG-胰岛素释放到介质中。体外释放试验表明,PEG-胰岛素的释放遵循零级动力学。基于独特的释放机制的理论分析也支持零级动力学。使用链脲佐菌素诱导的糖尿病大鼠模型进行的体内试验表明,薄膜的皮下植入可维持稳定的血浆药物水平,从而使空腹血糖水平(BGL)接近正常。作用持续时间取决于薄膜的厚度。使用 50 层薄膜,空腹 BGL 在约 16 天内保持在正常范围内。成功避免了其他释放系统中严重的初始突释问题。