School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
J Biomed Inform. 2020 Mar;103:103392. doi: 10.1016/j.jbi.2020.103392. Epub 2020 Feb 15.
The biomedical literature contains a sufficient number of chemical-protein interactions (CPIs). Automatic extraction of CPI is a crucial task in the biomedical domain, which has excellent benefits for precision medicine, drug discovery and basic biomedical research. In this study, we propose a novel model, BERT-based attention-guided capsule networks (BERT-Att-Capsule), for CPI extraction. Specifically, the approach first employs BERT (Bidirectional Encoder Representations from Transformers) to capture the long-range dependencies and bidirectional contextual information of input tokens. Then, the aggregation is regarded as a routing problem for how to pass messages from source capsule nodes to target capsule nodes. This process enables capsule networks to determine what and how much information need to be transferred, as well as to identify sophisticated and interleaved features. Afterwards, the multi-head attention is applied to guide the model to learn different contribution weights of capsule networks obtained by the dynamic routing. We evaluate our model on the CHEMPROT corpus. Our approach is superior in performance as compared with other state-of-the-art methods. Experimental results show that our approach can adequately capture the long-range dependencies and bidirectional contextual information of input tokens, obtain more fine-grained aggregation information through attention-guided capsule networks, and therefore improve the performance.
生物医学文献中包含足够数量的化学-蛋白质相互作用(CPI)。CPI 的自动提取是生物医学领域的一项关键任务,它对精准医学、药物发现和基础生物医学研究具有极好的益处。在这项研究中,我们提出了一种新的模型,基于 BERT 的注意力引导胶囊网络(BERT-Att-Capsule),用于 CPI 提取。具体来说,该方法首先使用 BERT(来自 Transformer 的双向编码器表示)来捕获输入标记的远程依赖关系和双向上下文信息。然后,聚合被视为从源胶囊节点到目标胶囊节点传递消息的路由问题。这个过程使胶囊网络能够确定需要传递什么以及多少信息,以及识别复杂和交错的特征。之后,应用多头注意力来指导模型学习通过动态路由获得的胶囊网络的不同贡献权重。我们在 CHEMPROT 语料库上评估了我们的模型。与其他最先进的方法相比,我们的方法在性能上更优。实验结果表明,我们的方法能够充分捕捉输入标记的远程依赖关系和双向上下文信息,通过注意力引导胶囊网络获得更精细的聚合信息,从而提高性能。