Suppr超能文献

MDL-CPI:用于化合物-蛋白质相互作用预测的多视图深度学习模型。

MDL-CPI: Multi-view deep learning model for compound-protein interaction prediction.

作者信息

Wei Lesong, Long Wentao, Wei Leyi

机构信息

School of Mathematics and Statistics, Hainan Normal University, Hainan, China; Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan.

School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China.

出版信息

Methods. 2022 Aug;204:418-427. doi: 10.1016/j.ymeth.2022.01.008. Epub 2022 Jan 31.

Abstract

Elucidating the mechanisms of Compound-Protein Interactions (CPIs) plays an essential role in drug discovery and development. Many computational efforts have been done to accelerate the development of this field. However, the current predictive performance is still not satisfactory, and existing methods consider only protein and compound features, ignoring their interactive information. In this study, we propose a multi-view deep learning method named MDL-CPI for CPI prediction. To sufficiently extract discriminative information, we introduce a hybrid architecture that leverages BERT (Bidirectional Encoder Representations from Transformers) and CNN (Convolutional Neural Network) to extract protein features from a sequential perspective, use the GNN (Graph Neural Networks) to extract compound features from a structural perspective, and generate a unified feature space by using AE2 (Autoencoder in Autoencoder Networks) network to learn the interactive information between BERT-CNN and Graph embeddings. Comparative results on benchmark datasets show that our proposed method exhibits better performance compared to existing CPI prediction methods, demonstrating the strong predictive ability of our model. Importantly, we demonstrate that the learned interactive information between compounds and proteins is critical to improve predictive performance. We release our source code and dataset at: https://github.com/Longwt123/MDL-CPI.

摘要

阐明化合物 - 蛋白质相互作用(CPI)的机制在药物发现和开发中起着至关重要的作用。为了加速该领域的发展,已经进行了许多计算方面的努力。然而,目前的预测性能仍然不尽人意,并且现有方法仅考虑蛋白质和化合物的特征,忽略了它们的交互信息。在本研究中,我们提出了一种名为MDL - CPI的多视图深度学习方法用于CPI预测。为了充分提取判别性信息,我们引入了一种混合架构,该架构利用BERT(来自Transformer的双向编码器表示)和CNN(卷积神经网络)从序列角度提取蛋白质特征,使用GNN(图神经网络)从结构角度提取化合物特征,并通过使用AE2(自动编码器网络中的自动编码器)网络生成统一的特征空间,以学习BERT - CNN和图嵌入之间的交互信息。在基准数据集上的比较结果表明,与现有的CPI预测方法相比,我们提出的方法表现出更好的性能,证明了我们模型强大的预测能力。重要的是,我们证明了化合物和蛋白质之间学习到的交互信息对于提高预测性能至关重要。我们在https://github.com/Longwt123/MDL - CPI上发布了我们的源代码和数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验