School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China.
Environ Sci Technol. 2020 Mar 17;54(6):3714-3724. doi: 10.1021/acs.est.0c00151. Epub 2020 Feb 28.
Bimetallic Fe-Mn oxide (BFMO) has been regarded as a promising activator of peroxysulfate (PS), the sustained activity and durability of BFMO for long-term activation of PS in situ, however, is unclear for groundwater remediation. A BFMO (i.e., MnFeO) was prepared and explored for PS-based in situ chemical oxidation (ISCO) of trichloroethylene (TCE) in sand columns with simulated/actual groundwater (SGW/AGW). The sustained activity of BFMO, oxidant utilization efficiency, and postreaction characterization were particularly investigated. Electron spin resonance (ESR) and radical scavenging tests implied that sulfate radicals (SO) and hydroxyl radicals (HO) played major roles in degrading TCE, whereas singlet oxygen (O) contributed less to TCE degradation by BFMO-activated Oxone. Fast degradation and almost complete dechlorination of TCE in AGW were obtained, with reaction stoichiometry efficiencies (RSE) of ΔCE/ΔOxone at 3-5%, much higher than those reported RSE values in HO-based ISCO (≤0.28%). HCO did not show detrimental effect on TCE degradation, and effects of natural organic matters (NOM) were negligible at high Oxone dosage. Postreaction characterizations displayed that the BFMO was remarkably stable with sustained activity for Oxone activation after 115 days of continuous-flow test, which therefore can be promising catalyst for Oxone-based ISCO for TCE-contaminated groundwater remediation.
双金属 Fe-Mn 氧化物 (BFMO) 已被视为过硫酸盐 (PS) 的一种很有前途的激活剂,然而,BFMO 在原位长期激活 PS 以用于地下水修复方面的持续活性和耐久性尚不清楚。本文制备了 BFMO(即 MnFeO),并在含有模拟/实际地下水 (SGW/AGW) 的砂柱中研究了其用于 PS 原位化学氧化 (ISCO) 三氯乙烯 (TCE) 的性能。特别研究了 BFMO 的持续活性、氧化剂利用效率和反应后特性。电子顺磁共振 (ESR) 和自由基清除试验表明,硫酸根自由基 (SO) 和羟基自由基 (HO) 在降解 TCE 方面起主要作用,而过氧单硫酸盐 (Oxone) 由 BFMO 激活产生的单线态氧 (O) 对 TCE 降解的贡献较小。在 AGW 中,TCE 得到快速降解且几乎完全脱氯,反应计量效率 (RSE) 为 ΔCE/ΔOxone 在 3-5%,远高于 HO 基 ISCO 中报道的 RSE 值 (≤0.28%)。HCO 对 TCE 降解没有不利影响,且在高 Oxone 剂量下天然有机物 (NOM) 的影响可以忽略不计。反应后特性表明,BFMO 在 115 天连续流动试验后对 Oxone 活化具有显著的稳定性和持续活性,因此有望成为 Oxone 基 ISCO 用于 TCE 污染地下水修复的催化剂。