Suppr超能文献

酵母丝状生长信号与 Mep2 转导蛋白的特定底物易位机制相关。

Yeast filamentation signaling is connected to a specific substrate translocation mechanism of the Mep2 transceptor.

机构信息

Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Gosselies, Belgium.

Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany.

出版信息

PLoS Genet. 2020 Feb 18;16(2):e1008634. doi: 10.1371/journal.pgen.1008634. eCollection 2020 Feb.

Abstract

The dimorphic transition from the yeast to the filamentous form of growth allows cells to explore their environment for more suitable niches and is often crucial for the virulence of pathogenic fungi. In contrast to their Mep1/3 paralogues, fungal Mep2-type ammonium transport proteins of the conserved Mep-Amt-Rh family have been assigned an additional receptor role required to trigger the filamentation signal in response to ammonium scarcity. Here, genetic, kinetic and structure-function analyses were used to shed light on the poorly characterized signaling role of Saccharomyces cerevisiae Mep2. We show that Mep2 variants lacking the C-terminal tail conserve the ability to induce filamentation, revealing that signaling can proceed in the absence of exclusive binding of a putative partner to the largest cytosolic domain of the protein. Our data support that filamentation signaling requires the conformational changes accompanying substrate translocation through the pore crossing the hydrophobic core of Mep2. pHluorin reporter assays show that the transport activity of Mep2 and of non-signaling Mep1 differently affect yeast cytosolic pH in vivo, and that the unique pore variant Mep2H194E, with apparent uncoupling of transport and signaling functions, acquires increased ability of acidification. Functional characterization in Xenopus oocytes reveals that Mep2 mediates electroneutral substrate translocation while Mep1 performs electrogenic transport. Our findings highlight that the Mep2-dependent filamentation induction is connected to its specific transport mechanism, suggesting a role of pH in signal mediation. Finally, we show that the signaling process is conserved for the Mep2 protein from the human pathogen Candida albicans.

摘要

从酵母到丝状生长的二态性转变使细胞能够探索更适合的小生境,这通常对致病性真菌的毒力至关重要。与它们的 Mep1/3 同源物不同,真菌 Mep2 型铵转运蛋白属于保守的 Mep-Amt-Rh 家族,被赋予了另一个受体作用,需要在铵缺乏时触发丝状形成信号。在这里,我们使用遗传、动力学和结构功能分析来阐明酿酒酵母 Mep2 信号作用的特征。我们表明,缺乏 C 端尾巴的 Mep2 变体保留了诱导丝状形成的能力,这表明在没有假定伴侣与蛋白质最大胞质域的排他性结合的情况下,信号可以传递。我们的数据支持丝状形成信号需要伴随底物穿过 Mep2 疏水性核心的孔转运的构象变化。pHluorin 报告基因检测表明,Mep2 和非信号 Mep1 的转运活性不同地影响酵母细胞内的 pH 值,并且具有明显的转运和信号功能解耦的独特孔变体 Mep2H194E 获得了增加的酸化能力。在非洲爪蟾卵母细胞中的功能表征表明,Mep2 介导电中性底物转运,而 Mep1 进行电致转运。我们的研究结果表明,Mep2 依赖性丝状形成诱导与其特定的转运机制有关,表明 pH 值在信号转导中起作用。最后,我们表明,信号过程对于来自人类病原体白色念珠菌的 Mep2 蛋白是保守的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验