Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal.
Biology of Membrane Transport, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
Sci Adv. 2018 Sep 12;4(9):eaar3599. doi: 10.1126/sciadv.aar3599. eCollection 2018 Sep.
Ammonium is an important nitrogen (N) source for living organisms, a key metabolite for pH control, and a potent cytotoxic compound. Ammonium is transported by the widespread AMT-Mep-Rh membrane proteins, and despite their significance in physiological processes, the nature of substrate translocation (NH/NH) by the distinct members of this family is still a matter of controversy. Using cells expressing representative AMT-Mep-Rh ammonium carriers and taking advantage of the natural chemical-physical property of the N isotopic signature linked to NH/NH conversion, this study shows that only cells expressing AMT-Mep-Rh proteins were depleted in N relative to N when compared to the external ammonium source. We observed N depletion over a wide range of external pH, indicating its independence of NH formation in solution. On the basis of inhibitor studies, ammonium transport by nonspecific cation channels did not show isotope fractionation but competition with K. We propose that kinetic N isotope fractionation is a common feature of AMT-Mep-Rh-type proteins, which favor N over N, owing to the dissociation of NH into NH + H in the protein, leading to N depletion in the cell and allowing NH passage or NH/H cotransport. This deprotonation mechanism explains these proteins' essential functions in environments under a low NH/K ratio, allowing organisms to specifically scavenge NH. We show that N isotope fractionation may be used in vivo not only to determine the molecular species being transported by ammonium transport proteins, but also to track ammonium toxicity and associated amino acids excretion.
氨是生物体重要的氮(N)源、pH 值控制的关键代谢物,也是一种有效的细胞毒性化合物。氨由广泛存在的 AMT-Mep-Rh 膜蛋白转运,尽管这些蛋白在生理过程中具有重要意义,但该家族不同成员的底物转运(NH/NH)性质仍然存在争议。本研究利用表达代表性 AMT-Mep-Rh 铵载体的细胞,利用与 NH/NH 转化相关的 N 同位素标记的自然理化性质,表明只有表达 AMT-Mep-Rh 蛋白的细胞在与外部铵源相比时,N 的消耗相对于 N 才会减少。我们观察到在广泛的外部 pH 值范围内都有 N 的消耗,这表明它与溶液中 NH 的形成无关。基于抑制剂研究,非特异性阳离子通道的铵转运没有表现出同位素分馏,但与 K 竞争。我们提出,动力学 N 同位素分馏是 AMT-Mep-Rh 型蛋白的共同特征,由于 NH 在蛋白中解离为 NH + H,这些蛋白有利于 N 而不是 N,导致细胞中 N 的消耗,并允许 NH 穿过或 NH/H 共转运。这种去质子化机制解释了这些蛋白在 NH/K 比值低的环境中的基本功能,使生物体能够特异性地摄取 NH。我们表明,N 同位素分馏不仅可用于确定由铵转运蛋白转运的分子种类,还可用于追踪铵毒性和相关氨基酸的排泄。