Division of Protein Science & Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India.
Biochem J. 2020 Mar 13;477(5):953-970. doi: 10.1042/BCJ20190909.
To understand the role of substrate plasminogen kringles in its differential catalytic processing by the streptokinase - human plasmin (SK-HPN) activator enzyme, Fluorescence Resonance Energy Transfer (FRET) model was generated between the donor labeled activator enzyme and the acceptor labeled substrate plasminogen (for both kringle rich Lys plasminogen - LysPG, and kringle less microplasminogen - µPG as substrates). Different steps of plasminogen to plasmin catalysis i.e. substrate plasminogen docking to scissile peptide bond cleavage, chemical transformation into proteolytically active product, and the decoupling of the nascent product from the SK-HPN activator enzyme were segregated selectively using (1) FRET signal as a proximity sensor to score the interactions between the substrate and the activator during the cycle of catalysis, (2) active site titration studies and (3) kinetics of peptide bond cleavage in the substrate. Remarkably, active site titration studies and the kinetics of peptide bond cleavage have shown that post docking chemical transformation of the substrate into the product is independent of kringles adjacent to the catalytic domain (CD). Stopped-flow based rapid mixing experiments for kringle rich and kringle less substrate plasminogen derivatives under substrate saturating and single cycle turnover conditions have shown that the presence of kringle domains adjacent to the CD in the macromolecular substrate contributes by selectively speeding up the final step, namely the product release/expulsion step of catalysis by the streptokinase-plasmin(ogen) activator enzyme.
为了理解基质纤溶酶原kringles 在其与链激酶-人纤溶酶(SK-HPN)激活酶的差异催化加工中的作用,在供体标记的激活酶和受体标记的基质纤溶酶原(富赖氨酸纤溶酶原-LysPG 和无kringles 的微纤溶酶原-µPG 作为底物)之间生成了荧光共振能量转移(FRET)模型。纤溶酶原到纤溶酶催化的不同步骤,即基质纤溶酶原与可切割肽键的对接、化学转化为具有蛋白水解活性的产物,以及新生产物与 SK-HPN 激活酶的解耦,使用(1)FRET 信号作为接近传感器来选择性地评分在催化循环中底物和激活剂之间的相互作用,(2)活性位点滴定研究和(3)底物中肽键切割的动力学进行了分离。值得注意的是,活性位点滴定研究和肽键切割动力学表明,对接后基质转化为产物的化学转化与催化结构域(CD)附近的kringles 无关。在基质饱和和单循环周转条件下,基于快速混合的停流实验,对富含kringles 和无kringles 的基质纤溶酶原衍生物进行了研究,结果表明,CD 附近kringles 结构域的存在通过选择性地加速最后一步,即 SK-链激酶-纤溶酶原(ogen)激活酶的产物释放/逐出步骤,对大分子基质的催化有贡献。