Oh Kwang-Im, You Xiao, Flanagan Jennifer C, Baiz Carlos R
Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States.
J Phys Chem Lett. 2020 Mar 5;11(5):1903-1908. doi: 10.1021/acs.jpclett.0c00378. Epub 2020 Feb 24.
Liquid-liquid phase separation is common in complex mixtures, but the behavior of nanoconfined liquids is poorly understood from a physical perspective. Dimethyl sulfoxide (DMSO) is an amphiphilic molecule with unique concentration-dependent bulk properties in mixtures with water. Here, we use ultrafast two-dimensional infrared (2D IR) spectroscopy to measure the H-bond dynamics of two probe molecules with different polarities: formamide (FA) and dimethylformamide (DMF). Picosecond H-bond dynamics are fastest in the intermediate concentration regime (20-50 mol % DMSO), because such confined water exhibits bulk-like dynamics. Each vibrational probe experiences a unique microscopic environment as a result of nanoscale phase separation. Molecular dynamics simulations show that the dynamics span multiple time scales, from femtoseconds to nanoseconds. Our studies suggest a previously unknown liquid environment, which we label "local bulk", in which despite the local heterogeneity, the ultrafast H-bond dynamics are similar to bulk water.
液-液相分离在复杂混合物中很常见,但从物理角度来看,对纳米受限液体的行为了解甚少。二甲基亚砜(DMSO)是一种两亲分子,在与水的混合物中具有独特的浓度依赖性宏观性质。在这里,我们使用超快二维红外(2D IR)光谱来测量两种具有不同极性的探针分子:甲酰胺(FA)和二甲基甲酰胺(DMF)的氢键动力学。皮秒级的氢键动力学在中间浓度范围(20-50 mol%DMSO)最快,因为这种受限水表现出类似宏观水的动力学。由于纳米级相分离,每个振动探针都经历了独特的微观环境。分子动力学模拟表明,动力学跨越多个时间尺度,从飞秒到纳秒。我们的研究表明存在一种以前未知的液体环境,我们将其标记为“局部宏观”,其中尽管存在局部不均匀性,但超快氢键动力学与宏观水相似。