Peña Francisco J, Zambrano D, Negrete O, De Chiara Gabriele, Orellana P A, Vargas P
Departamento de Física, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile.
Centro para el Desarrollo de la Nanociencia y la Nanotecnología, 8320000 Santiago, Chile.
Phys Rev E. 2020 Jan;101(1-1):012116. doi: 10.1103/PhysRevE.101.012116.
In this work, we study the performance of a quasistatic and quantum-adiabatic magnetic Otto cycles with a working substance composed of a single graphene quantum dot modeled by the continuum approach with the use of the zigzag boundary condition. Modulating an external or perpendicular magnetic field, in the quasistatic approach, we found a constant behavior in the total work extracted that is not present in the quantum-adiabatic formulation. We find that, in the quasistatic approach, the engine yielded a greater performance in terms of total work extracted and efficiency as compared with its quantum-adiabatic counterpart. In the quasistatic case, this is due to the working substance being in thermal equilibrium at each point of the cycle, maximizing the energy extracted in the adiabatic strokes.
在这项工作中,我们研究了一种准静态和量子绝热磁奥托循环的性能,其工作物质由单个石墨烯量子点组成,采用连续介质方法并利用锯齿形边界条件进行建模。在准静态方法中,通过调制外部或垂直磁场,我们发现在提取的总功中存在一种恒定行为,而在量子绝热公式中则不存在这种行为。我们发现,在准静态方法中,与量子绝热对应物相比,该发动机在提取的总功和效率方面表现出更高的性能。在准静态情况下,这是由于工作物质在循环的每个点都处于热平衡状态,从而使绝热冲程中提取的能量最大化。