Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853.
Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
J Biol Chem. 2020 Apr 3;295(14):4498-4512. doi: 10.1074/jbc.RA119.011837. Epub 2020 Feb 18.
The small GTPase cell division cycle 42 (CDC42) plays essential roles in neurogenesis and brain development. Previously, using murine embryonic P19 cells as a model system, we showed that CDC42 stimulates mTOR complex 1 (mTORC1) activity and thereby up-regulates transcription factors required for the formation of neural progenitor cells. However, paradoxically, although endogenous CDC42 is required for both the initial transition of undifferentiated P19 cells to neural progenitors and their ultimate terminal differentiation into neurons, ectopic CDC42 overexpression promotes only the first stage of neurogenesis ( the formation of neuroprogenitors) and not the second phase (differentiation into neurons). Here, using both P19 cells and mouse embryonic stem cells, we resolve this paradox, demonstrating that two splice variants of CDC42, differing only in nine amino acid residues in their very C-terminal regions, play distinct roles in neurogenesis. We found that a CDC42 splice variant that has a ubiquitous tissue distribution, termed here as CDC42u, specifically drives the formation of neuroprogenitor cells, whereas a brain-specific CDC42 variant, CDC42b, is essential for promoting the transition of neuroprogenitor cells to neurons. We further show that the specific roles of CDC42u and CDC42b in neurogenesis are due to their opposing effects on mTORC1 activity. Specifically, CDC42u stimulated mTORC1 activity and thereby induced neuroprogenitor formation, whereas CDC42b worked together with activated CDC42-associated kinase (ACK) in down-regulating mTOR expression and promoting neuronal differentiation. These findings highlight the remarkable functional specificities of two highly similar CDC42 splice variants in regulating distinct stages of neurogenesis.
小分子 GTP 酶细胞分裂周期蛋白 42(CDC42)在神经发生和大脑发育中发挥着重要作用。先前,我们使用鼠胚胎 P19 细胞作为模型系统,表明 CDC42 刺激 mTOR 复合物 1(mTORC1)的活性,从而上调神经祖细胞形成所需的转录因子。然而,矛盾的是,尽管内源性 CDC42 对于未分化的 P19 细胞向神经祖细胞的初始过渡及其最终的终末分化为神经元都是必需的,但外源性 CDC42 的过表达仅促进神经发生的第一阶段(神经祖细胞的形成),而不促进第二阶段(分化为神经元)。在这里,我们使用 P19 细胞和小鼠胚胎干细胞,解决了这个矛盾,证明了 CDC42 的两种剪接变体,仅在其非常 C 末端区域的九个氨基酸残基上有所不同,在神经发生中发挥不同的作用。我们发现,一种具有广泛组织分布的 CDC42 剪接变体,在此称为 CDC42u,特异性地驱动神经祖细胞的形成,而一种大脑特异性的 CDC42 变体,CDC42b,对于促进神经祖细胞向神经元的过渡是必不可少的。我们进一步表明,CDC42u 和 CDC42b 在神经发生中的特定作用是由于它们对 mTORC1 活性的相反影响。具体而言,CDC42u 刺激 mTORC1 的活性,从而诱导神经祖细胞的形成,而 CDC42b 与激活的 CDC42 相关激酶(ACK)一起作用,下调 mTOR 的表达并促进神经元分化。这些发现强调了两种高度相似的 CDC42 剪接变体在调节神经发生的不同阶段中的显著功能特异性。