Suppr超能文献

硝化作用对低能量通量的适应控制着黑暗海洋中还原态氮的含量。

Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean.

机构信息

State Key Laboratory of Marine Environmental Sciences, Xiamen University, 361101 Xiamen, China;

College of Ocean and Earth Sciences, Xiamen University, 361101 Xiamen, China.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4823-4830. doi: 10.1073/pnas.1912367117. Epub 2020 Feb 18.

Abstract

Ammonia oxidation to nitrite and its subsequent oxidation to nitrate provides energy to the two populations of nitrifying chemoautotrophs in the energy-starved dark ocean, driving a coupling between reduced inorganic nitrogen (N) pools and production of new organic carbon (C) in the dark ocean. However, the relationship between the flux of new C production and the fluxes of N of the two steps of oxidation remains unclear. Here, we show that, despite orders-of-magnitude difference in cell abundances between ammonia oxidizers and nitrite oxidizers, the two populations sustain similar bulk N-oxidation rates throughout the deep waters with similarly high affinities for ammonia and nitrite under increasing substrate limitation, thus maintaining overall homeostasis in the oceanic nitrification pathway. Our observations confirm the theoretical predictions of a redox-informed ecosystem model. Using balances from this model, we suggest that consistently low ammonia and nitrite concentrations are maintained when the two populations have similarly high substrate affinities and their loss rates are proportional to their maximum growth rates. The stoichiometric relations between the fluxes of C and N indicate a threefold to fourfold higher C-fixation efficiency per mole of N oxidized by ammonia oxidizers compared to nitrite oxidizers due to nearly identical apparent energetic requirements for C fixation of the two populations. We estimate that the rate of chemoautotrophic C fixation amounts to ∼1 × 10 to ∼2 × 10 mol of C per year globally through the flux of ∼1 × 10 to ∼2 × 10 mol of N per year of the two steps of oxidation throughout the dark ocean.

摘要

氨氧化为亚硝酸盐,随后亚硝酸盐氧化为硝酸盐,为黑暗海洋中两种硝化化能自养生物提供能量,在黑暗海洋中将还原无机氮(N)池与新有机碳(C)的产生耦合在一起。然而,新 C 生产通量与氧化的两个步骤的 N 通量之间的关系尚不清楚。在这里,我们表明,尽管氨氧化菌和亚硝酸盐氧化菌的细胞丰度相差几个数量级,但在整个深水区,这两个种群维持着相似的整体 N 氧化速率,并且在底物限制增加的情况下,对氨和亚硝酸盐具有相似的高亲和力,从而在海洋硝化途径中维持整体内稳态。我们的观察结果证实了一个基于氧化还原的生态系统模型的理论预测。使用该模型的平衡,我们建议当两个种群具有相似的底物亲和力且其损失率与其最大生长率成比例时,氨氧化菌和亚硝酸盐氧化菌的氨和亚硝酸盐浓度始终保持较低水平。C 和 N 通量之间的化学计量关系表明,氨氧化菌每氧化 1 摩尔 N 固定的 C 比亚硝酸盐氧化菌高 3 到 4 倍,这主要是由于两个种群的 C 固定的表观能量需求几乎相同。我们估计,通过每年约 1×10 到 2×10 摩尔的氧化两个步骤的 N 通量,全球每年通过化能自养固定的 C 通量约为 1×10 到 2×10 摩尔。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/763d/7060736/d17f00a22782/pnas.1912367117fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验