Suppr超能文献

生态动力学解释了海洋中的模块化反硝化作用。

Ecological dynamics explain modular denitrification in the ocean.

作者信息

Sun Xin, Buchanan Pearse J, Zhang Irene H, San Roman Magdalena, Babbin Andrew R, Zakem Emily J

机构信息

Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305.

Environment, Commonwealth Scientific and Industrial Research Organization, Hobart TAS 7004, Australia.

出版信息

Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2417421121. doi: 10.1073/pnas.2417421121. Epub 2024 Dec 18.

Abstract

Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO→NO→NO→NO→N), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (NO) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets ("modules") of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO and NO in a NO-filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO→NO module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO→NO module. Results also capture observations that NO is the dominant source of NO. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments.

摘要

海洋氧含量最小值区域(OMZs)中的微生物驱动着具有全球影响力的生物地球化学过程。其中一个过程就是多步反硝化作用(NO→NO→NO→NO→N),它主导着OMZ中生物可利用氮(N)的损失以及一氧化二氮(NO)的产生。反硝化作用导致的氮损失通常被作为一个单一步骤来测量和建模,但观测结果显示,OMZs中的大多数反硝化菌都包含完整途径的子集(“模块”)。在这里,我们确定了维持多种反硝化菌的生态机制,解释了某些模块的普遍性,并研究了其对氮损失的影响。在一个理想化的OMZ生态系统模型中,我们根据其潜在的氧化还原化学来描述执行不同反硝化模块的微生物功能类型,并用热力学和途径长度惩罚来限制它们的特性。当有机物(OM)限制生长时,单步模块的生物量产量会沿着反硝化途径增加,这解释了在充满NO的海洋中呼吸NO和NO的种群的生存能力。结果预测了反硝化菌群落沿环境梯度的演替:随着限制底物从OM转变为N,途径长度增加,这表明在自由生活、受OM限制的群落中,短的NO→NO模块有一个生态位,而在与有机颗粒相关的群落中,完整途径有一个生态位,这与观测结果一致。该模型捕捉并从机制上解释了观察到的NO→NO模块的优势和更高的氧耐受性。结果还捕捉到了NO是NO的主要来源的观测结果。我们的框架推进了对海洋中微生物生态学与氮损失之间关系的机制理解,并且可以扩展到其他过程和环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce5f/11670096/bff2ed2e31fe/pnas.2417421121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验