Suppr超能文献

RNase Y 在枯草芽孢杆菌中的动态膜定位。

Dynamic Membrane Localization of RNase Y in Bacillus subtilis.

机构信息

UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France.

Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.

出版信息

mBio. 2020 Feb 18;11(1):e03337-19. doi: 10.1128/mBio.03337-19.

Abstract

Metabolic turnover of mRNA is fundamental to the control of gene expression in all organisms, notably in fast-adapting prokaryotes. In many bacteria, RNase Y initiates global mRNA decay via an endonucleolytic cleavage, as shown in the Gram-positive model organism This enzyme is tethered to the inner cell membrane, a pseudocompartmentalization coherent with its task of initiating mRNA cleavage/maturation of mRNAs that are translated at the cell periphery. Here, we used total internal reflection fluorescence microscopy (TIRFm) and single-particle tracking (SPT) to visualize RNase Y and analyze its distribution and dynamics in living cells. We find that RNase Y diffuses rapidly at the membrane in the form of dynamic short-lived foci. Unlike RNase E, the major decay-initiating RNase in , the formation of foci is not dependent on the presence of RNA substrates. On the contrary, RNase Y foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. The Y-complex of three proteins (YaaT, YlbF, and YmcA) has previously been shown to play an important role for RNase Y activity We demonstrate that Y-complex mutations have an effect similar to but much stronger than that of depletion of RNA in increasing the number and size of RNase Y foci at the membrane. Our data suggest that the Y-complex shifts the assembly status of RNase Y toward fewer and smaller complexes, thereby increasing cleavage efficiency of complex substrates like polycistronic mRNAs. All living organisms must degrade mRNA to adapt gene expression to changing environments. In bacteria, initiation of mRNA decay generally occurs through an endonucleolytic cleavage. In the Gram-positive model organism and probably many other bacteria, the key enzyme for this task is RNase Y, which is anchored at the inner cell membrane. While this pseudocompartmentalization appears coherent with translation occurring primarily at the cell periphery, our knowledge on the distribution and dynamics of RNase Y in living cells is very scarce. Here, we show that RNase Y moves rapidly along the membrane in the form of dynamic short-lived foci. These foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. This contrasts with RNase E, the major decay-initiating RNase in , where it was shown that formation of foci is dependent on the presence of RNA substrates. We also show that a protein complex (Y-complex) known to influence the specificity of RNase Y activity is capable of shifting the assembly status of RNase Y toward fewer and smaller complexes. This highlights fundamental differences between RNase E- and RNase Y-based degradation machineries.

摘要

mRNA 的代谢周转率是所有生物体中基因表达控制的基础,在快速适应的原核生物中尤为明显。在许多细菌中,RNase Y 通过内切核酸酶切割启动全局 mRNA 降解,这在革兰氏阳性模式生物 中得到了证明。这种酶与细胞内膜相连,这种拟似隔间化与它在细胞边缘翻译的 mRNA 切割/成熟的任务是一致的。在这里,我们使用全内反射荧光显微镜(TIRFm)和单粒子跟踪(SPT)来可视化 RNase Y 并分析其在活细胞中的分布和动态。我们发现 RNase Y 以动态的短寿命焦点的形式在膜上快速扩散。与主要的起始降解 RNase E 不同, 中 RNase Y 焦点的形成不依赖于 RNA 底物的存在。相反,转录抑制后焦点变得更加丰富并且增大,这表明它们不是核酸酶最活跃的形式。由三个蛋白质(YaaT、YlbF 和 YmcA)组成的 Y 复合物先前已被证明对 RNase Y 的活性起着重要作用 。我们证明,Y 复合物突变的效果类似于但比 RNA 耗竭更强烈,从而增加了膜上 RNase Y 焦点的数量和大小。我们的数据表明,Y 复合物将 RNase Y 的组装状态向更少和更小的复合物转移,从而增加了多顺反子 mRNA 等复杂底物的切割效率。所有生物都必须降解 mRNA 以适应不断变化的环境中的基因表达。在细菌中,mRNA 降解的起始通常通过内切核酸酶切割发生。在革兰氏阳性模式生物 中,可能还有许多其他细菌中,这个任务的关键酶是 RNase Y,它锚定在内膜上。虽然这种拟似隔间化与主要在细胞边缘发生的翻译似乎一致,但我们对活细胞中 RNase Y 分布和动态的了解非常有限。在这里,我们表明 RNase Y 以动态的短寿命焦点的形式沿膜快速移动。转录抑制后,这些焦点变得更加丰富并且增大,这表明它们不构成核酸酶最活跃的形式。这与 RNase E 形成对比,RNase E 是 中的主要起始降解 RNase,据报道焦点的形成依赖于 RNA 底物的存在。我们还表明,一种已知影响 RNase Y 活性特异性的蛋白质复合物(Y 复合物) 能够将 RNase Y 的组装状态向更少和更小的复合物转移。这突出了基于 RNase E 和 RNase Y 的降解机制之间的根本区别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f0/7029143/8be1a24157ad/mBio.03337-19-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验