School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China.
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China.
Nanoscale. 2020 Feb 27;12(8):5217-5226. doi: 10.1039/c9nr09166a.
A deep understanding of the interactions between nanomaterials and biomolecules is critical for biomedical applications of nanomaterials. In this paper, we study the binding patterns, structural stabilities and diffusions of a double stranded DNA (dsDNA) segment on two recently reported graphene derivatives, boronic graphene (BC3) and nitrogenized graphene (C3N), with molecular dynamics (MD) simulations. Our results demonstrate that dsDNA exhibits a highly favored binding mode with an upright orientation on BC3 and C3N, independent of the initial configurations. In contrast to graphene (GRA) which demonstrates a cytotoxic feature, BC3 and C3N show high biocompatibility without causing evident structural distortions to the dsDNA duplex, benefitting from the periodic atomic charge distributions. Most interestingly, highly directional dsDNA transport is realized by formation of BC3/GRA and C3N/GRA in-plane heterojunctions, where the dsDNA migrating direction is uniformly BC3 → GRA → C3N. Furthermore, free energy profiling calculated by the umbrella sampling technique quantitatively supports these observations. Insights from our study would potentiate and guide future studies of graphenic 2D materials and bring about a flourishing new branch of in-plane heterojunction applications as targeted drug delivery templates in biomedical research.
深入了解纳米材料与生物分子之间的相互作用,对于纳米材料在生物医学中的应用至关重要。在本文中,我们通过分子动力学(MD)模拟研究了双链 DNA(dsDNA)片段在最近报道的两种石墨烯衍生物硼化石墨烯(BC3)和氮化石墨烯(C3N)上的结合模式、结构稳定性和扩散。我们的结果表明,dsDNA 在 BC3 和 C3N 上表现出一种非常有利的结合模式,具有直立的取向,与初始构象无关。与表现出细胞毒性特征的石墨烯(GRA)不同,BC3 和 C3N 表现出高生物相容性,不会导致 dsDNA 双链明显的结构扭曲,这得益于周期性的原子电荷分布。最有趣的是,通过形成 BC3/GRA 和 C3N/GRA 面内异质结,实现了高度定向的 dsDNA 输运,其中 dsDNA 的迁移方向是均匀的 BC3→GRA→C3N。此外,通过伞形采样技术计算的自由能分布定量支持了这些观察结果。我们的研究结果将增强和指导对石墨烯二维材料的未来研究,并为平面异质结应用带来新的分支,作为生物医学研究中靶向药物输送模板。