Suppr超能文献

分离失真:利用模拟基因型数据评估统计方法。

Segregation distortion: Utilizing simulated genotyping data to evaluate statistical methods.

机构信息

School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom.

出版信息

PLoS One. 2020 Feb 19;15(2):e0228951. doi: 10.1371/journal.pone.0228951. eCollection 2020.

Abstract

Segregation distortion is the phenomenon in which genotypes deviate from expected Mendelian ratios in the progeny of a cross between two varieties or species. There is not currently a widely used consensus for the appropriate statistical test, or more specifically the multiple testing correction procedure, used to detect segregation distortion for high-density single-nucleotide polymorphism (SNP) data. Here we examine the efficacy of various multiple testing procedures, including chi-square test with no correction for multiple testing, false-discovery rate correction and Bonferroni correction using an in-silico simulation of a biparental mapping population. We find that the false discovery rate correction best approximates the traditional p-value threshold of 0.05 for high-density marker data. We also utilize this simulation to test the effect of segregation distortion on the genetic mapping process, specifically on the formation of linkage groups during marker clustering. Only extreme segregation distortion was found to effect genetic mapping. In addition, we utilize replicate empirical mapping populations of wheat varieties Avalon and Cadenza to assess how often segregation distortion conforms to the same pattern between closely related wheat varieties.

摘要

分离失真是指在两个品种或物种杂交的后代中,基因型偏离预期的孟德尔比例的现象。目前,对于用于检测高密度单核苷酸多态性(SNP)数据分离失真的适当统计检验,或者更具体地说,多重检验校正程序,没有广泛使用的共识。在这里,我们研究了各种多重检验程序的效果,包括未进行多重检验校正的卡方检验、错误发现率校正和 Bonferroni 校正,方法是对双亲图谱群体进行模拟。我们发现,错误发现率校正最接近高密度标记数据的传统 p 值阈值 0.05。我们还利用该模拟来检验分离失真对遗传图谱过程的影响,特别是对标记聚类过程中连锁群形成的影响。只有极端的分离失真才会影响遗传图谱。此外,我们利用小麦品种 Avalon 和 Cadenza 的重复经验图谱群体来评估分离失真在亲缘关系密切的小麦品种之间经常出现的模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5d8/7029859/55c0a9a78fb6/pone.0228951.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验