Eukaryotic Innovations Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA.
Eukaryotic Innovations Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
mSphere. 2020 Feb 19;5(1):e00744-19. doi: 10.1128/mSphere.00744-19.
Kinetoplastid parasites, including , , and , harbor unique organelles known as glycosomes, which are evolutionarily related to peroxisomes. Glycosome/peroxisome biogenesis is mediated by proteins called peroxins that facilitate organelle formation, proliferation, and degradation and import of proteins housed therein. Import of matrix proteins occurs via one of two pathways that are dictated by their peroxisome targeting sequence (PTS). In PTS1 import, a C-terminal tripeptide sequence, most commonly SKL, is recognized by the soluble receptor Pex5. In PTS2 import, a less conserved N-terminal sequence is recognized by Pex7. The soluble receptors deliver their cargo to the import channel consisting minimally of Pex13 and Pex14. While much of the import process is conserved, kinetoplastids are the only organisms to have two Pex13s, Pex13.1 and Pex13.2. It is unclear why trypanosomes require two Pex13s when one is sufficient for most eukaryotes. To interrogate the role of Pex13.2, we have employed biochemical approaches to partially resolve the composition of the Pex13/Pex14 import complexes in and characterized glycosome morphology and protein import in Pex13.2-deficient parasites. Here, we show that Pex13.2 is an integral glycosome membrane protein that interacts with Pex13.1 and Pex14. The N terminus of Pex13.2 faces the cytoplasmic side of the membrane, where it can facilitate interactions required for protein import. Two-dimensional gel electrophoresis revealed three glycosome membrane complexes containing combinations of Pex13.1, Pex13.2, and Pex14. The silencing of Pex13.2 resulted in parasites with fewer, larger glycosomes and disrupted glycosome protein import, suggesting the protein is involved in glycosome biogenesis as well as protein import. Furthermore, superresolution microscopy demonstrated that Pex13.2 localizes to discrete foci in the glycosome periphery, indicating that the glycosome periphery is not homogenous. causes human African trypanosomiasis and a wasting disease called Nagana in livestock. Current treatments are expensive, toxic, and difficult to administer. Because of this, the search for new drug targets is essential. has glycosomes that are essential to parasite survival; however, our ability to target them in drug development is hindered by our lack of understanding about how these organelles are formed and maintained. This work forwards our understanding of how the parasite-specific protein Pex13.2 functions in glycosome protein import and lays the foundation for future studies focused on blocking Pex13.2 function, which would be lethal to bloodstream-form parasites that reside in the mammalian bloodstream.
动基体目寄生虫,包括锥虫、利什曼原虫和克氏锥虫,拥有被称为糖基体的独特细胞器,其与过氧化物酶体在进化上相关。糖基体/过氧化物酶体的生物发生由称为过氧化物酶体蛋白的蛋白质介导,这些蛋白质有助于细胞器的形成、增殖和降解以及其中蛋白质的输入。基质蛋白的输入通过由其过氧化物酶体靶向序列(PTS)决定的两种途径之一发生。在 PTS1 输入中,最常见的 SKL 是 C 末端三肽序列,被可溶性受体 Pex5 识别。在 PTS2 输入中,较少保守的 N 末端序列被 Pex7 识别。可溶性受体将其货物递送至由 Pex13 和 Pex14 组成的最小导入通道。虽然导入过程的大部分都被保守,但动基体目寄生虫是唯一具有两个 Pex13 的生物体,即 Pex13.1 和 Pex13.2。尚不清楚为什么当一种对于大多数真核生物来说就足够时,锥虫需要两个 Pex13。为了研究 Pex13.2 的作用,我们采用生化方法部分解析了 和 中的 Pex13/Pex14 导入复合物的组成,并表征了 Pex13.2 缺陷寄生虫中的糖基体形态和蛋白质导入。在这里,我们表明 Pex13.2 是糖基体膜的完整蛋白,与 Pex13.1 和 Pex14 相互作用。Pex13.2 的 N 端面向膜的细胞质侧,在那里它可以促进蛋白质导入所需的相互作用。二维凝胶电泳显示包含 Pex13.1、Pex13.2 和 Pex14 的三种糖基体膜复合物。Pex13.2 的沉默导致寄生虫的糖基体数量减少、体积增大,并且糖基体蛋白导入受到破坏,表明该蛋白参与糖基体生物发生以及蛋白质导入。此外,超分辨率显微镜显示 Pex13.2 定位于糖基体周围的离散焦点,表明糖基体周围不是均匀的。 引起人类非洲锥虫病和家畜的消瘦病(称为 Nagana)。目前的治疗方法昂贵、有毒且难以管理。因此,寻找新的药物靶点至关重要。 具有对寄生虫存活至关重要的糖基体;然而,由于我们对这些细胞器如何形成和维持的了解有限,我们在药物开发中靶向它们的能力受到阻碍。这项工作推进了我们对寄生虫特异性蛋白 Pex13.2 在糖基体蛋白导入中的功能的理解,并为未来专注于阻断 Pex13.2 功能的研究奠定了基础,阻断 Pex13.2 功能对存在于哺乳动物血液中的血液期寄生虫是致命的。