Suppr超能文献

“不稳定的”血红素通过转录共激活因子 Hap4p 对线粒体生物发生进行关键调控。

"Labile" heme critically regulates mitochondrial biogenesis through the transcriptional co-activator Hap4p in .

机构信息

CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.

Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.

出版信息

J Biol Chem. 2020 Apr 10;295(15):5095-5109. doi: 10.1074/jbc.RA120.012739. Epub 2020 Feb 18.

Abstract

Heme (iron protoporphyrin IX) is a well-known prosthetic group for enzymes involved in metabolic pathways such as oxygen transport and electron transfer through the mitochondrial respiratory chain. However, heme has also been shown to be an important regulatory molecule (as "labile" heme) for diverse processes such as translation, kinase activity, and transcription in mammals, yeast, and bacteria. Taking advantage of a yeast strain deficient for heme production that enabled controlled modulation and monitoring of labile heme levels, here we investigated the role of labile heme in the regulation of mitochondrial biogenesis. This process is regulated by the HAP complex in yeast. Using several biochemical assays along with EM and epifluorescence microscopy, to the best of our knowledge, we show for the first time that cellular labile heme is critical for the post-translational regulation of HAP complex activity, most likely through the stability of the transcriptional co-activator Hap4p. Consequently, we found that labile heme regulates mitochondrial biogenesis and cell growth. The findings of our work highlight a new mechanism in the regulation of mitochondrial biogenesis by cellular metabolites.

摘要

血红素(铁原卟啉 IX)是一种众所周知的酶辅基,参与代谢途径,如通过线粒体呼吸链的氧气运输和电子转移。然而,血红素也被证明是一种重要的调节分子(作为“不稳定”的血红素),参与哺乳动物、酵母和细菌中各种过程,如翻译、激酶活性和转录。利用一种缺乏血红素产生的酵母菌株,能够控制和监测不稳定血红素水平,我们在这里研究了不稳定血红素在调节线粒体生物发生中的作用。这个过程在酵母中受到 HAP 复合物的调节。使用几种生化测定方法以及 EM 和荧光显微镜,据我们所知,我们首次表明细胞内不稳定血红素对于 HAP 复合物活性的翻译后调节至关重要,这很可能是通过转录共激活因子 Hap4p 的稳定性实现的。因此,我们发现不稳定血红素调节线粒体生物发生和细胞生长。我们工作的发现强调了细胞代谢物调节线粒体生物发生的新机制。

相似文献

1
"Labile" heme critically regulates mitochondrial biogenesis through the transcriptional co-activator Hap4p in .
J Biol Chem. 2020 Apr 10;295(15):5095-5109. doi: 10.1074/jbc.RA120.012739. Epub 2020 Feb 18.
2
cAMP-induced mitochondrial compartment biogenesis: role of glutathione redox state.
J Biol Chem. 2012 Apr 27;287(18):14569-78. doi: 10.1074/jbc.M111.302786. Epub 2012 Mar 6.
3
The transcriptional activator HAP4 is a high copy suppressor of an oxa1 yeast mutation.
Gene. 2005 Jul 18;354:53-7. doi: 10.1016/j.gene.2005.03.016.
5
6
Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae.
Eukaryot Cell. 2005 Nov;4(11):1829-39. doi: 10.1128/EC.4.11.1829-1839.2005.
8
Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.
J Biol Chem. 2017 Oct 13;292(41):16942-16954. doi: 10.1074/jbc.M117.790923. Epub 2017 Aug 22.
9
The Plasma Membrane Protein Nce102 Implicated in Eisosome Formation Rescues a Heme Defect in Mitochondria.
J Biol Chem. 2016 Aug 12;291(33):17417-26. doi: 10.1074/jbc.M116.727743. Epub 2016 Jun 17.
10
Reactive oxygen species-mediated regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae.
J Biol Chem. 2010 Jan 15;285(3):1733-42. doi: 10.1074/jbc.M109.019570. Epub 2009 Nov 6.

引用本文的文献

1
Modified Lipid Particle Recognition: A Link Between Atherosclerosis and Cancer?
Biology (Basel). 2025 Jun 11;14(6):675. doi: 10.3390/biology14060675.
4
Inactivation of Accelerates -Dependent Osmoadaptation in .
Int J Mol Sci. 2023 Mar 10;24(6):5320. doi: 10.3390/ijms24065320.
7
Yap5 Competes With Hap4 for the Regulation of Iron Homeostasis Genes in the Human Pathogen .
Front Cell Infect Microbiol. 2021 Nov 26;11:731988. doi: 10.3389/fcimb.2021.731988. eCollection 2021.

本文引用的文献

1
Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.
J Biol Chem. 2017 Oct 13;292(41):16942-16954. doi: 10.1074/jbc.M117.790923. Epub 2017 Aug 22.
2
Redox and reactive oxygen species regulation of mitochondrial cytochrome C oxidase biogenesis.
Antioxid Redox Signal. 2013 Dec 1;19(16):1940-52. doi: 10.1089/ars.2012.4847. Epub 2012 Oct 15.
3
p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance.
Antioxid Redox Signal. 2013 Feb 1;18(4):386-99. doi: 10.1089/ars.2012.4615. Epub 2012 Sep 20.
4
Transcriptional integration of mitochondrial biogenesis.
Trends Endocrinol Metab. 2012 Sep;23(9):459-66. doi: 10.1016/j.tem.2012.06.006. Epub 2012 Jul 18.
5
Reactive oxygen species-mediated control of mitochondrial biogenesis.
Int J Cell Biol. 2012;2012:403870. doi: 10.1155/2012/403870. Epub 2012 May 30.
6
Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects.
J Physiol. 2012 Jul 15;590(14):3349-60. doi: 10.1113/jphysiol.2012.230185. Epub 2012 May 14.
7
cAMP-induced mitochondrial compartment biogenesis: role of glutathione redox state.
J Biol Chem. 2012 Apr 27;287(18):14569-78. doi: 10.1074/jbc.M111.302786. Epub 2012 Mar 6.
8
Reactive oxygen species-mediated regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae.
J Biol Chem. 2010 Jan 15;285(3):1733-42. doi: 10.1074/jbc.M109.019570. Epub 2009 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验