Suppr超能文献

经典 EEG 微观状态转换反映了 BOLD 静息态网络之间的切换,并可预测 fMRI 信号。

Canonical EEG microstates transitions reflect switching among BOLD resting state networks and predict fMRI signal.

机构信息

Laureate Institute for Brain Research, Tulsa, OK, United States of America.

Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, United States of America.

出版信息

J Neural Eng. 2022 Jan 6;18(6). doi: 10.1088/1741-2552/ac4595.

Abstract

Electroencephalography (EEG) microstates (MSs), which reflect a large topographical representation of coherent electrophysiological brain activity, are widely adopted to study cognitive processes mechanisms and aberrant alterations in brain disorders. MS topographies are quasi-stable lasting between 60-120 ms. Some evidence suggests that MS are the electrophysiological signature of resting-state networks (RSNs). However, the spatial and functional interpretation of MS and their association with functional magnetic resonance imaging (fMRI) remains unclear.. In a cohort of healthy subjects (= 52), we conducted several statistical and machine learning (ML) approaches analyses on the association among MS spatio-temporal dynamics and the blood-oxygenation-level dependent (BOLD) simultaneous EEG-fMRI data using statistical and ML approaches.Our results using a generalized linear model showed that MS transitions were largely and negatively associated with BOLD signals in the somatomotor, visual, dorsal attention, and ventral attention fMRI networks with limited association within the default mode network. Additionally, a novel recurrent neural network (RNN) confirmed the association between MS transitioning and fMRI signal while revealing that MS dynamics can model BOLD signals and vice versa.Results suggest that MS transitions may represent the deactivation of fMRI RSNs and provide evidence that both modalities measure common aspects of undergoing brain neuronal activities. These results may help to better understand the electrophysiological interpretation of MS.

摘要

脑电图(EEG)微状态(MS)反映了大脑相干电生理活动的大范围拓扑表示,广泛应用于研究认知过程机制和脑疾病中的异常改变。MS 地形图具有准稳定性,持续时间在 60-120ms 之间。有证据表明,MS 是静息态网络(RSN)的电生理特征。然而,MS 的空间和功能解释及其与功能磁共振成像(fMRI)的关联仍然不清楚。在一组健康受试者(=52)中,我们使用统计和机器学习(ML)方法对 MS 时空动力学与同时进行的 EEG-fMRI 数据之间的关联进行了几项分析。我们使用广义线性模型的结果表明,MS 转换与 somatomotor、visual、dorsal attention 和 ventral attention fMRI 网络中的 BOLD 信号具有很大的负相关性,与默认模式网络中的相关性有限。此外,一种新的递归神经网络(RNN)证实了 MS 转换与 fMRI 信号之间的关联,同时揭示了 MS 动力学可以模拟 BOLD 信号,反之亦然。结果表明,MS 转换可能代表 fMRI RSN 的去激活,并提供了两种模态都测量大脑神经元活动的共同方面的证据。这些结果可能有助于更好地理解 MS 的电生理解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0136/11008726/978f90b062db/nihms-1980324-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验