Suppr超能文献

乙二醛酶途径中效率的优化。

Optimization of efficiency in the glyoxalase pathway.

作者信息

Creighton D J, Migliorini M, Pourmotabbed T, Guha M K

机构信息

Department of Chemistry, University of Maryland Baltimore County, Catonsville 21228.

出版信息

Biochemistry. 1988 Sep 20;27(19):7376-84. doi: 10.1021/bi00419a031.

Abstract

A quantitative kinetic model for the glutathione-dependent conversion of methylglyoxal to D-lactate in mammalian erythrocytes has been formulated, on the basis of the measured or calculated rate and equilibrium constants associated with (a) the hydration of methylglyoxal, (b) the specific base catalyzed formation of glutathione-(R,S)-methylglyoxal thiohemiacetals, (c) the glyoxalase I catalyzed conversion of the diastereotopic thiohemiacetals to (S)-D-lactoylglutathione, and (d) the glyoxalase II catalyzed hydrolysis of (S)-D-lactoylglutathione to form D-lactate and glutathione. The model exhibits the following properties under conditions where substrate concentrations are small in comparison to the Km values for the glyoxalase enzymes: The overall rate of conversion of methylglyoxal to D-lactate is primarily limited by the rate of formation of the diastereotopic thiohemiacetals. The hydration of methylglyoxal is kinetically unimportant, since the apparent rate constant for hydration is (approximately 500-10(3))-fold smaller than that for formation of the thiohemiacetals. The rate of conversion of methylglyoxal to (S)-D-lactoylglutathione is near optimal, on the basis that the apparent rate constant for the glyoxalase I reaction (kcatEt/Km congruent to 4-20 s-1 for pig, rat, and human erythrocytes) is roughly equal to the apparent rate constant for decomposition of the thiohemiacetals to form glutathione and methylglyoxal [k(obsd) = 11 s-1, pH 7]. The capacity of glyoxalase I to use both diastereotopic thiohemiacetals, versus only one of the diastereomers, as substrates represents a 3- to 6-fold advantage in the steady-state rate of conversion of the diastereomers to (S)-D-lactoylglutathione.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

基于与以下过程相关的测量或计算速率及平衡常数,构建了一个定量动力学模型,用于描述哺乳动物红细胞中谷胱甘肽依赖的甲基乙二醛转化为D - 乳酸的过程:(a)甲基乙二醛的水合作用;(b)特定碱催化形成谷胱甘肽 - (R,S)-甲基乙二醛硫代半缩醛;(c)乙二醛酶I催化非对映硫代半缩醛转化为(S)-D - 乳酰谷胱甘肽;(d)乙二醛酶II催化(S)-D - 乳酰谷胱甘肽水解形成D - 乳酸和谷胱甘肽。在底物浓度相对于乙二醛酶的Km值较小的条件下,该模型具有以下特性:甲基乙二醛转化为D - 乳酸的总速率主要受非对映硫代半缩醛形成速率的限制。甲基乙二醛的水合作用在动力学上不重要,因为水合作用的表观速率常数比硫代半缩醛形成的表观速率常数小(约500 - 10³)倍。基于乙二醛酶I反应的表观速率常数(猪、大鼠和人类红细胞的kcatEt/Km约为4 - 20 s⁻¹)大致等于硫代半缩醛分解形成谷胱甘肽和甲基乙二醛的表观速率常数[k(obsd) = 11 s⁻¹,pH 7],甲基乙二醛转化为(S)-D - 乳酰谷胱甘肽的速率接近最佳。乙二醛酶I能够使用两种非对映硫代半缩醛而非仅一种非对映异构体作为底物,这在非对映异构体转化为(S)-D - 乳酰谷胱甘肽的稳态速率方面具有3至6倍的优势。(摘要截短于250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验