Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic.
Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany.
Macromol Biosci. 2020 Apr;20(4):e1900354. doi: 10.1002/mabi.201900354. Epub 2020 Feb 19.
To tailor cell-surface interactions, precise and controlled attachment of cell-adhesive motifs is required, while any background non-specific cell and protein adhesion has to be blocked effectively. Herein, a versatile and highly reproducible antifouling surface modification based on "clickable" groups and hierarchically structured diblock copolymer brushes for the controlled attachment of cells is reported. The polymer brush architecture combines an antifouling bottom block of poly(2-hydroxyethyl methacrylate) poly(HEMA) and an ultrathin azide-bearing top block, which can participate in well-established "click" reactions including the highly selective copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction under mild conditions. This straightforward approach allows the rapid conjugation of a cell-adhesive, alkyne-bearing cyclic RGD peptide motif, enabling subsequent specific attachment of NIH 3T3 fibroblasts, their extensive proliferation and confluent cell sheet formation after 48 h of incubation. The generally applicable strategy presented in this report can be employed for surface functionalization with diverse alkyne-bearing biological moieties via CuAAC or copper-free alkyne-azide cycloaddition protocols, making it a versatile functionalization approach and a promising tool for tissue engineering, biomaterial implant design, and other applications that require surfaces supporting highly specific cell attachment.
为了调整细胞表面相互作用,需要精确且可控地附着细胞黏附基序,同时有效地阻止任何背景下的非特异性细胞和蛋白黏附。在此,报道了一种基于“点击”基团和分级结构两亲嵌段共聚物刷的多功能且高度重现的抗污表面修饰方法,用于控制细胞的附着。聚合物刷结构结合了抗污的聚(2-羟乙基甲基丙烯酸酯)聚(HEMA)底层和超薄的叠氮基顶层,该顶层可以参与成熟的“点击”反应,包括在温和条件下高度选择性的铜催化炔基-叠氮环加成(CuAAC)反应。这种简单的方法允许快速共轭带有细胞黏附性的炔基环 RGD 肽基序,从而能够在孵育 48 小时后特异性地附着 NIH 3T3 成纤维细胞,并进行广泛的增殖和形成细胞层。本报告中提出的通用策略可以通过 CuAAC 或无铜炔基-叠氮环加成反应方案,用于带有炔基的各种生物分子的表面功能化,使其成为一种多功能的功能化方法,也是组织工程、生物材料植入物设计和其他需要支持高度特异性细胞附着的表面的有前途的工具。