Suppr超能文献

铜(I)催化叠氮-炔烃环加成反应的机理。

On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition.

机构信息

Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA).

出版信息

Chem Rec. 2016 Jun;16(3):1501-17. doi: 10.1002/tcr.201600002. Epub 2016 May 24.

Abstract

The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction regiospecifically produces 1,4-disubstituted-1,2,3-triazole molecules. This heterocycle formation chemistry has high tolerance to reaction conditions and substrate structures. Therefore, it has been practiced not only within, but also far beyond the area of heterocyclic chemistry. Herein, the mechanistic understanding of CuAAC is summarized, with a particular emphasis on the significance of copper/azide interactions. Our analysis concludes that the formation of the azide/copper(I) acetylide complex in the early stage of the reaction dictates the reaction rate. The subsequent triazole ring-formation step is fast and consequently possibly kinetically invisible. Therefore, structures of substrates and copper catalysts, as well as other reaction variables that are conducive to the formation of the copper/alkyne/azide ternary complex predisposed for cycloaddition would result in highly efficient CuAAC reactions. Specifically, terminal alkynes with relatively low pKa values and an inclination to engage in π-backbonding with copper(I), azides with ancillary copper-binding ligands (aka chelating azides), and copper catalysts that resist aggregation, balance redox activity with Lewis acidity, and allow for dinuclear cooperative catalysis are favored in CuAAC reactions. Brief discussions on the mechanistic aspects of internal alkyne-involved CuAAC reactions are also included, based on the relatively limited data that are available at this point.

摘要

铜(I)催化的叠氮化物-炔烃环加成(CuAAC)反应以区域选择性生成 1,4-二取代-1,2,3-三唑分子。这种杂环形成化学具有对反应条件和底物结构的高耐受性。因此,它不仅在杂环化学领域内得到应用,而且在该领域之外也得到了广泛应用。本文总结了 CuAAC 的反应机理,特别强调了铜-叠氮化物相互作用的重要性。我们的分析得出结论,反应早期形成的叠氮化物/铜(I)炔烃配合物决定了反应速率。随后的三唑环形成步骤很快,因此可能在动力学上不可见。因此,底物和铜催化剂的结构以及有利于形成有利于环加成的铜-炔烃-叠氮三元配合物的其他反应变量会导致高效的 CuAAC 反应。具体而言,具有相对较低 pKa 值且倾向于与铜(I)发生π-键合的末端炔烃、具有辅助铜结合配体(即螯合叠氮化物)的叠氮化物,以及能够抵抗聚集、平衡氧化还原活性与路易斯酸度并允许双核协同催化的铜催化剂,在 CuAAC 反应中是有利的。基于目前有限的数据,本文还简要讨论了涉及内部炔烃的 CuAAC 反应的机理方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验