School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, UK.
Molecular Biology Department, Ingenza Ltd., Roslin Innovation Centre, Roslin, UK.
Biotechnol Bioeng. 2020 Jun;117(6):1805-1816. doi: 10.1002/bit.27312. Epub 2020 Mar 3.
The CRISPR-Cas9 system has become increasingly popular for genome engineering across all fields of biological research, including in the Gram-positive model organism Bacillus subtilis. A major drawback for the commercial use of Cas9 is the IP landscape requiring a license for its use, as well as reach-through royalties on the final product. Recently an alternative CRISPR nuclease, free to use for industrial R&D, MAD7 was released by Inscripta (CO). Here we report the first use of MAD7 for gene editing in B. subtilis, in which editing rates of 93% and 100% were established. Additionally, we engineer the first reported catalytically inactive MAD7 (dMAD7) variant (D877A, E962A, and D1213A) and demonstrate its utility for CRISPR interference (CRISPRi) at up to 71.3% reduction of expression at single and multiplexed target sites within B. subtilis. We also confirm the CRISPR-based editing mode of action in B. subtilis providing evidence that the nuclease-mediated DNA double-strand break acts as a counterselection mechanism after homologous recombination of the donor DNA.
CRISPR-Cas9 系统在包括革兰氏阳性模式生物枯草芽孢杆菌在内的所有生物研究领域的基因组工程中越来越受欢迎。Cas9 的商业使用存在一个主要障碍,即需要获得其使用的知识产权 (IP) 许可,以及对最终产品的追加入场费。最近,Inscripta (CO) 公司发布了一种可免费用于工业研发的替代 CRISPR 核酸酶 MAD7。在这里,我们报告了 MAD7 在枯草芽孢杆菌中的首次基因编辑应用,其中编辑率分别达到 93%和 100%。此外,我们还设计了第一个报道的无催化活性 MAD7 (dMAD7) 变体 (D877A、E962A 和 D1213A),并证明其在枯草芽孢杆菌中单靶和多靶位点的 CRISPR 干扰 (CRISPRi) 中具有实用性,表达抑制率高达 71.3%。我们还在枯草芽孢杆菌中证实了基于 CRISPR 的编辑作用模式,提供了证据表明,供体 DNA 同源重组后,核酸酶介导的 DNA 双链断裂作为一种反选择机制发挥作用。