Department of Microbiology, Cornell Universitygrid.5386.8, Ithaca, New York, USA.
Microbiol Spectr. 2021 Oct 31;9(2):e0075421. doi: 10.1128/Spectrum.00754-21. Epub 2021 Sep 15.
The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system from Streptococcus pyogenes has been widely deployed as a tool for bacterial strain construction. Conventional CRISPR-Cas9 editing strategies require design and molecular cloning of an appropriate guide RNA (gRNA) to target genome cleavage and a repair template for introduction of the desired site-specific genome modification. Here, we present a streamlined method that leverages the existing collection of nearly 4,000 Bacillus subtilis strains (the BKE collection) with individual genes replaced by an integrated erythromycin () resistance cassette. A single plasmid (pAJS23) with a gRNA targeted to allows cleavage of the genome at any nonessential gene and at sites nearby to many essential genes. This plasmid can be engineered to include a repair template, or the repair template can be cotransformed with the plasmid as either a PCR product or genomic DNA. We demonstrate the utility of this system for generating gene replacements, site-specific mutations, modification of intergenic regions, and introduction of gene-reporter fusions. In sum, this strategy bypasses the need for gRNA design and allows the facile transfer of mutations and genetic constructions with no requirement for intermediate cloning steps. Bacillus subtilis is a well-characterized Gram-positive model organism and a popular platform for biotechnology. Although many different CRISPR-based genome editing strategies have been developed for B. subtilis, they generally involve the design and cloning of a specific guide RNA (gRNA) and repair template for each application. By targeting the resistance cassette with an anti- gRNA, genome editing can be directed to any of nearly 4,000 gene disruptants within the existing BKE collection of strains. Repair templates can be engineered as PCR products, or specific alleles and constructions can be transformed as chromosomal DNA, thereby bypassing the need for plasmid construction. The described method is rapid and facilitates a wide range of genome manipulations.
来自酿脓链球菌的成簇规律间隔短回文重复序列 (CRISPR)-Cas9 系统已被广泛用作细菌菌株构建的工具。传统的 CRISPR-Cas9 编辑策略需要设计和分子克隆适当的指导 RNA (gRNA) 以靶向基因组切割,并引入所需的特定基因组修饰的修复模板。在这里,我们提出了一种简化的方法,利用现有的近 4000 株枯草芽孢杆菌菌株(BKE 集合)的集合,每个基因都被整合的红霉素 () 抗性盒取代。带有靶向 gRNA 的单个质粒 (pAJS23) 可在任何非必需基因和许多必需基因附近的位点切割基因组。可以对该质粒进行工程改造以包含修复模板,或者可以将修复模板与质粒一起共转化为 PCR 产物或基因组 DNA。我们证明了该系统在生成基因替换、特定突变、基因间区修饰和引入基因报告融合物方面的实用性。总之,这种策略绕过了 gRNA 设计的需要,并允许轻松转移突变和遗传构建,而无需中间克隆步骤。枯草芽孢杆菌是一种特征良好的革兰氏阳性模式生物,也是生物技术的热门平台。尽管已经为枯草芽孢杆菌开发了许多不同的基于 CRISPR 的基因组编辑策略,但它们通常涉及为每个应用设计和克隆特定的 gRNA 和修复模板。通过用抗 gRNA 靶向 抗性盒,可以将基因组编辑定向到现有的 BKE 菌株集合中的近 4000 个基因敲除突变体中的任何一个。修复模板可以设计为 PCR 产物,或者可以将特定等位基因和构建体转化为染色体 DNA,从而绕过质粒构建的需要。所描述的方法快速且便于广泛的基因组操作。