Suppr超能文献

A unified framework for connectionist systems.

作者信息

Golden R M

机构信息

Department of Psychology, Stanford University, CA 94305.

出版信息

Biol Cybern. 1988;59(2):109-20. doi: 10.1007/BF00317773.

Abstract

Pattern classification using connectionist (i.e., neural network) models is viewed within a statistical framework. A connectionist network's subjective beliefs about its statistical environment are derived. This belief structure is the network's "subjective" probability distribution. Stimulus classification is interpreted as computing the "most probable" response for a given stimulus with respect to the subjective probability distribution. Given the subjective probability distribution, learning algorithms can be analyzed and designed using maximum likelihood estimation techniques, and statistical tests can be developed to evaluate and compare network architectures. The framework is applicable to many connectionist networks including those of Hopfield (1982, 1984), Cohen and Grossberg (1983), Anderson et al. (1977), and Rumelhart et al. (1986b).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验