Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
Clinic for Cardiology and Pneumology, Georg-August University Göttingen, Robert Koch Str. 40, 37075, Göttingen, Germany.
Basic Res Cardiol. 2020 Feb 20;115(2):20. doi: 10.1007/s00395-020-0780-8.
Pharmacologic approaches for the treatment of atrial arrhythmias are limited due to side effects and low efficacy. Thus, the identification of new antiarrhythmic targets is of clinical interest. Recent genome studies suggested an involvement of SCN10A sodium channels (Na1.8) in atrial electrophysiology. This study investigated the role and involvement of Na1.8 (SCN10A) in arrhythmia generation in the human atria and in mice lacking Na1.8. Na1.8 mRNA and protein were detected in human atrial myocardium at a significant higher level compared to ventricular myocardium. Expression of Na1.8 and Na1.5 did not differ between myocardium from patients with atrial fibrillation and sinus rhythm. To determine the electrophysiological role of Na1.8, we investigated isolated human atrial cardiomyocytes from patients with sinus rhythm stimulated with isoproterenol. Inhibition of Na1.8 by A-803467 or PF-01247324 showed no effects on the human atrial action potential. However, we found that Na1.8 significantly contributes to late Na current and consequently to an increased proarrhythmogenic diastolic sarcoplasmic reticulum Ca leak in human atrial cardiomyocytes. Selective pharmacological inhibition of Na1.8 potently reduced late Na current, proarrhythmic diastolic Ca release, delayed afterdepolarizations as well as spontaneous action potentials. These findings could be confirmed in murine atrial cardiomyocytes from wild-type mice and also compared to SCN10A mice (genetic ablation of Na1.8). Pharmacological Na1.8 inhibition showed no effects in SCN10A mice. Importantly, in vivo experiments in SCN10A mice showed that genetic ablation of Na1.8 protects against atrial fibrillation induction. This study demonstrates that Na1.8 is expressed in the murine and human atria and contributes to late Na current generation and cellular arrhythmogenesis. Blocking Na1.8 selectively counteracts this pathomechanism and protects against atrial arrhythmias. Thus, our translational study reveals a new selective therapeutic target for treating atrial arrhythmias.
由于副作用和疗效低,治疗心房性心律失常的药物方法受到限制。因此,寻找新的抗心律失常靶点具有临床意义。最近的基因组研究表明,SCN10A 钠通道(Na1.8)参与了心房电生理。本研究探讨了 Na1.8(SCN10A)在人类心房和缺乏 Na1.8 的小鼠心律失常发生中的作用和参与。与心室心肌相比,人心房心肌中 Na1.8 mRNA 和蛋白的表达水平显著更高。在心房颤动和窦性节律患者的心肌中,Na1.8 和 Na1.5 的表达没有差异。为了确定 Na1.8 的电生理作用,我们研究了来自窦性节律患者的分离的人心房肌细胞,并用异丙肾上腺素刺激。用 A-803467 或 PF-01247324 抑制 Na1.8 对人心房动作电位没有影响。然而,我们发现 Na1.8 显著有助于晚期 Na 电流,从而导致人心房肌细胞中增加的促心律失常性舒张期肌浆网 Ca 渗漏。选择性 Na1.8 药理学抑制可有效降低晚期 Na 电流、促心律失常性舒张期 Ca 释放、延迟后除极以及自发性动作电位。这些发现可以在来自野生型小鼠的鼠心房肌细胞中得到证实,也可以与 SCN10A 小鼠(Na1.8 的基因缺失)进行比较。在 SCN10A 小鼠中,Na1.8 的药理学抑制没有作用。重要的是,在 SCN10A 小鼠的体内实验表明,Na1.8 的基因缺失可防止心房颤动的诱导。本研究表明,Na1.8 在鼠和人心房中表达,并有助于晚期 Na 电流的产生和细胞性心律失常的发生。选择性阻断 Na1.8 可拮抗这种病理机制并防止心房性心律失常。因此,我们的转化研究揭示了一种治疗心房性心律失常的新的选择性治疗靶点。