Suppr超能文献

用于实值分类问题的循环复值 GMDH 型神经网络。

Circular Complex-Valued GMDH-Type Neural Network for Real-Valued Classification Problems.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Dec;31(12):5285-5299. doi: 10.1109/TNNLS.2020.2966031. Epub 2020 Nov 30.

Abstract

Recently, applications of complex-valued neural networks (CVNNs) to real-valued classification problems have attracted significant attention. However, most existing CVNNs are black-box models with poor explanation performance. This study extends the real-valued group method of data handling (RGMDH)-type neural network to the complex field and constructs a circular complex-valued group method of data handling (C-CGMDH)-type neural network, which is a white-box model. First, a complex least squares method is proposed for parameter estimation. Second, a new complex-valued symmetric regularity criterion is constructed with a logarithmic function to represent explicitly the magnitude and phase of the actual and predicted complex output to evaluate and select the middle candidate models. Furthermore, the property of this new complex-valued external criterion is proven to be similar to that of the real external criterion. Before training this model, a circular transformation is used to transform the real-valued input features to the complex field. Twenty-five real-valued classification data sets from the UCI Machine Learning Repository are used to conduct the experiments. The results show that both RGMDH and C-CGMDH models can select the most important features from the complete feature space through a self-organizing modeling process. Compared with RGMDH, the C-CGMDH model converges faster and selects fewer features. Furthermore, its classification performance is statistically significantly better than the benchmark complex-valued and real-valued models. Regarding time complexity, the C-CGMDH model is comparable with other models in dealing with the data sets that have few features. Finally, we demonstrate that the GMDH-type neural network can be interpretable.

摘要

最近,复值神经网络 (CVNNs) 在实值分类问题中的应用引起了广泛关注。然而,大多数现有的 CVNN 都是黑盒模型,解释性能较差。本研究将实值分组数据处理 (RGMDH) 型神经网络扩展到复数域,并构建了一个圆形复值分组数据处理 (C-CGMDH) 型神经网络,这是一个白盒模型。首先,提出了一种复最小二乘法进行参数估计。其次,构建了一种新的复值对称正则化准则,使用对数函数显式表示实际和预测复输出的幅度和相位,以评估和选择中间候选模型。此外,证明了该新复值外部准则的性质与实外部准则的性质相似。在训练该模型之前,使用圆形变换将实值输入特征转换到复数域。使用 UCI 机器学习知识库中的 25 个实值分类数据集进行实验。结果表明,RGMDH 和 C-CGMDH 模型都可以通过自组织建模过程从完整的特征空间中选择最重要的特征。与 RGMDH 相比,C-CGMDH 模型收敛速度更快,选择的特征更少。此外,其分类性能在统计学上明显优于基准复值和实值模型。关于时间复杂度,C-CGMDH 模型在处理特征较少的数据集时与其他模型相当。最后,我们证明了 GMDH 型神经网络是可解释的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验