Zhang Junming, Wu Yan
IEEE Trans Biomed Circuits Syst. 2017 Oct;11(5):1097-1110. doi: 10.1109/TBCAS.2017.2719631. Epub 2017 Aug 14.
Traditionally, automatic sleep stage classification is quite a challenging task because of the difficulty in translating open-textured standards to mathematical models and the limitations of handcrafted features. In this paper, a new system for automatic sleep stage classification is presented. Compared with existing sleep stage methods, our method can capture the sleep information hidden inside electroencephalography (EEG) signals and automatically extract features from raw data. To translate open sleep stage standards into machine rules recognized by computers, a new model named fast discriminative complex-valued convolutional neural network (FDCCNN) is proposed to extract features from raw EEG data and classify sleep stages. The new model combines complex-valued backpropagation and the Fisher criterion. It can learn discriminative features and overcome the negative effect of imbalance dataset. More importantly, the orthogonal decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron are proven. A speed-up algorithm is proposed to reduce computational workload and yield improvements of over an order of magnitude compared to the normal convolution algorithm. The classification performances of handcrafted features and different convolutional neural networks are compared with that of the FDCCNN. The total accuracy and kappa coefficient of the proposed method are 92% and 0.84, respectively. Experiment results demonstrated that the performance of our system is comparable to those of human experts.
传统上,自动睡眠阶段分类是一项颇具挑战性的任务,这是因为将开放式标准转化为数学模型存在困难,以及手工特征存在局限性。本文提出了一种用于自动睡眠阶段分类的新系统。与现有的睡眠阶段分类方法相比,我们的方法能够捕捉隐藏在脑电图(EEG)信号中的睡眠信息,并自动从原始数据中提取特征。为了将开放式睡眠阶段标准转化为计算机能够识别的机器规则,提出了一种名为快速判别复值卷积神经网络(FDCCNN)的新模型,用于从原始EEG数据中提取特征并对睡眠阶段进行分类。新模型结合了复值反向传播和Fisher准则。它能够学习判别性特征,并克服不平衡数据集的负面影响。更重要的是,证明了复值卷积神经元实部和虚部的正交决策边界。提出了一种加速算法来减少计算量,与普通卷积算法相比,计算量提高了一个数量级以上。将手工特征和不同卷积神经网络的分类性能与FDCCNN的分类性能进行了比较。所提方法的总准确率和kappa系数分别为92%和0.84。实验结果表明,我们系统的性能与人类专家的性能相当。