Zhou Tao, Fan Deng-Ping, Cheng Ming-Ming, Shen Jianbing, Shao Ling
Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates.
CS, Nankai University, Tianjin, 300350 China.
Comput Vis Media (Beijing). 2021;7(1):37-69. doi: 10.1007/s41095-020-0199-z. Epub 2021 Jan 7.
Salient object detection, which simulates human visual perception in locating the most significant object(s) in a scene, has been widely applied to various computer vision tasks. Now, the advent of depth sensors means that depth maps can easily be captured; this additional spatial information can boost the performance of salient object detection. Although various RGB-D based salient object detection models with promising performance have been proposed over the past several years, an in-depth understanding of these models and the challenges in this field remains lacking. In this paper, we provide a comprehensive survey of RGB-D based salient object detection models from various perspectives, and review related benchmark datasets in detail. Further, as light fields can also provide depth maps, we review salient object detection models and popular benchmark datasets from this domain too. Moreover, to investigate the ability of existing models to detect salient objects, we have carried out a comprehensive attribute-based evaluation of several representative RGB-D based salient object detection models. Finally, we discuss several challenges and open directions of RGB-D based salient object detection for future research. All collected models, benchmark datasets, datasets constructed for attribute-based evaluation, and related code are publicly available at https://github.com/taozh2017/RGBD-SODsurvey.
显著目标检测旨在模拟人类视觉感知,以定位场景中最重要的目标,已广泛应用于各种计算机视觉任务。如今,深度传感器的出现意味着深度图可以轻松获取;这种额外的空间信息能够提升显著目标检测的性能。尽管在过去几年中已经提出了各种基于RGB-D的具有良好性能的显著目标检测模型,但对这些模型以及该领域的挑战仍缺乏深入理解。在本文中,我们从多个角度对基于RGB-D的显著目标检测模型进行了全面综述,并详细回顾了相关的基准数据集。此外,由于光场也可以提供深度图,我们也对该领域的显著目标检测模型和流行的基准数据集进行了综述。此外,为了研究现有模型检测显著目标的能力,我们对几个具有代表性的基于RGB-D的显著目标检测模型进行了全面的基于属性的评估。最后,我们讨论了基于RGB-D的显著目标检测未来研究的几个挑战和开放方向。所有收集的模型、基准数据集、为基于属性的评估构建的数据集以及相关代码均可在https://github.com/taozh2017/RGBD-SODsurvey上公开获取。