Suppr超能文献

通过结合浓度梯度发生器和带凸缘腔室阵列实现片上微生物抑制能力检测

On-chip MIC by Combining Concentration Gradient Generator and Flanged Chamber Arrays.

作者信息

Zhang Xiao-Yan, Li Zhe-Yu, Ueno Kose, Misawa Hiroaki, Ren Nan-Qi, Sun Kai

机构信息

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.

Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan.

出版信息

Micromachines (Basel). 2020 Feb 17;11(2):207. doi: 10.3390/mi11020207.

Abstract

Minimum inhibition concentration (MIC) of antibiotic is an effective value to ascertain the agent and minimum dosage of inhibiting bacterial growth. However, current techniques to determine MIC are labor intensive and time-consuming, and require skilled operator and high initial concentration of bacteria. To simplify the operation and reduce the time of inhibition test, we developed a microfluidic system, containing a concentration generator and sub-micro-liter chambers, for rapid bacterial growth and inhibition test. To improve the mixing effect, a micropillar array in honeycomb-structure channels is designed, so the steady concentration gradient of amoxicillin can be generated. The flanged chambers are used to culture bacteria under the condition of continuous flow and the medium of chambers is refreshed constantly, which could supply the sufficient nutrient for bacteria growth and take away the metabolite. Based on the microfluidic platform, the bacterial growth with antibiotic inhibition on chip can be quantitatively measured and MIC can be obtained within six hours using low initial concentration of bacteria. Overall, this microfluidic platform has the potential to provide rapidness and effectiveness to screen bacteria and determine MIC of corresponding antibiotics in clinical therapies.

摘要

抗生素的最低抑菌浓度(MIC)是确定抑制细菌生长的药物及最小剂量的有效数值。然而,目前测定MIC的技术劳动强度大、耗时,且需要熟练的操作人员以及高初始细菌浓度。为简化操作并缩短抑菌测试时间,我们开发了一种微流控系统,其包含一个浓度发生器和亚微升腔室,用于快速进行细菌生长和抑菌测试。为提高混合效果,在蜂窝结构通道中设计了微柱阵列,从而能够产生阿莫西林的稳定浓度梯度。带凸缘的腔室用于在连续流动条件下培养细菌,腔室中的培养基不断更新,这可为细菌生长提供充足营养并带走代谢产物。基于该微流控平台,芯片上细菌在抗生素抑制下的生长情况可进行定量测量,且使用低初始细菌浓度在6小时内即可获得MIC。总体而言,这个微流控平台有潜力为临床治疗中筛选细菌及确定相应抗生素的MIC提供快速性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4259/7074598/ceaf57fad478/micromachines-11-00207-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验