Suppr超能文献

使用关联规则方法识别与急性肾损伤相关的药物组合。

Identifying drug combinations associated with acute kidney injury using association rules method.

机构信息

Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.

Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand.

出版信息

Pharmacoepidemiol Drug Saf. 2020 Apr;29(4):467-473. doi: 10.1002/pds.4960. Epub 2020 Feb 20.

Abstract

BACKGROUND

Older adults are at an increased risk of acute kidney injury (AKI) because of aging, multiple comorbidities, and polypharmacy.

OBJECTIVES

The aim of this case-crossover study was to apply association rule (AR) analysis to ascertain drug combinations contributing to the risk of AKI in adults aged 65 years and older.

METHODS

We sourced a nationwide representative sample of New Zealanders aged ≥65 years from the pharmaceutical collections and hospital discharge information. Prescription records (2005-2015) of drugs of interest were sourced from New Zealand pharmaceutical collections (Pharms). We classified medication exposure, as a binary variable, at individual drug level belonging to medication classes including antimicrobials, antihistamines, diuretics, opioids, nonsteroidal anti-inflammatory medications. Several studies have associated the drugs of interest from these medication classes with AKI in older adults. We extracted the first-time coded diagnosis of AKI from the National Minimal Data Set. A unique patient identifier linked the prescription data set to the event data set, to set up a case-crossover cohort, indexed at the first AKI event. ARs were then applied to identify frequent drug combinations in the case and the control periods (l-day observation with a 35-day washout period), and the association of AKI with each frequent drug combination was tested by computing a matched odds ratio (MOR) and its 95% confidence interval (CI).

RESULTS

We identified 55 747 individuals (mean age 82.14) from 2005 to 2014 with incident AKI and exposed to at least one of the drugs of interest. ARs identified several medication classes including antimicrobials, nonsteroidal anti-inflammatory drugs, and opioids are associated with AKI. The frequently used medicines associated with AKI are trimethoprim (MOR = 1.68; 95% CI = [1.54-1.80]), ondansetron (MOR = 1.43; 95% CI = [1.25-1.64]), codeine phosphate plus metoclopramide (MOR = 1.37; 95% CI = [1.11-1.63]), and norfloxacin (MOR = 1.24; 95% CI [1.05-1.42]).

CONCLUSIONS

We applied ARs, a novel methodology, to big data to ascertain drug combinations associated with AKI. ARs uncovered previously implicated medication classes that increase the risk of AKI in older adults. The finding that ondansetron increases the risk of AKI requires further investigation.

摘要

背景

由于衰老、多种合并症和多种药物治疗,老年人发生急性肾损伤(AKI)的风险增加。

目的

本病例交叉研究旨在应用关联规则(AR)分析确定导致 65 岁及以上成年人 AKI 风险的药物组合。

方法

我们从新西兰全国代表性的 65 岁以上人群的药品收藏和住院信息中获取了一个样本。从新西兰药品收藏(Pharms)中获取了感兴趣的药物的处方记录(2005-2015 年)。将药物暴露情况归类为个体药物水平的二分类变量,属于包括抗生素、抗组胺药、利尿剂、阿片类药物和非甾体抗炎药在内的药物类别。几项研究表明,这些药物类别中的药物与老年人的 AKI 有关。我们从国家最小数据集(National Minimal Data Set)中提取了首次编码 AKI 的诊断结果。使用唯一的患者标识符将处方数据集与事件数据集链接,以建立病例交叉队列,以首次 AKI 事件为指标。然后应用 AR 来识别病例和对照期(1 天观察期,35 天洗脱期)中的常见药物组合,并通过计算匹配比值比(MOR)及其 95%置信区间(CI)来测试 AKI 与每种常见药物组合的关联。

结果

我们从 2005 年至 2014 年期间确定了 55747 名(平均年龄 82.14 岁)发生 AKI 且至少使用过一种感兴趣药物的个体。AR 确定了几种与 AKI 相关的药物类别,包括抗生素、非甾体抗炎药和阿片类药物。与 AKI 相关的常用药物包括甲氧苄啶(MOR=1.68;95%CI=[1.54-1.80])、昂丹司琼(MOR=1.43;95%CI=[1.25-1.64])、磷酸可待因加甲氧氯普胺(MOR=1.37;95%CI=[1.11-1.63])和诺氟沙星(MOR=1.24;95%CI=[1.05-1.42])。

结论

我们应用 AR 这一新颖的方法对大数据进行分析,以确定与 AKI 相关的药物组合。AR 揭示了以前涉及的增加老年人 AKI 风险的药物类别。昂丹司琼增加 AKI 风险的发现需要进一步调查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验