Suppr超能文献

具有半平坦共形结构的四维二阶偏微分方程。

Second-order PDEs in four dimensions with half-flat conformal structure.

作者信息

Berjawi S, Ferapontov E V, Kruglikov B, Novikov V

机构信息

Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK.

Institute of Mathematics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia.

出版信息

Proc Math Phys Eng Sci. 2020 Jan;476(2233):20190642. doi: 10.1098/rspa.2019.0642. Epub 2020 Jan 29.

Abstract

We study second-order partial differential equations (PDEs) in four dimensions for which the conformal structure defined by the characteristic variety of the equation is half-flat (self-dual or anti-self-dual) on every solution. We prove that this requirement implies the Monge-Ampère property. Since half-flatness of the conformal structure is equivalent to the existence of a non-trivial dispersionless Lax pair, our result explains the observation that all known scalar second-order integrable dispersionless PDEs in dimensions four and higher are of Monge-Ampère type. Some partial classification results of Monge-Ampère equations in four dimensions with half-flat conformal structure are also obtained.

摘要

我们研究四维空间中的二阶偏微分方程(PDEs),对于这些方程,由方程的特征簇定义的共形结构在每个解上都是半平坦的(自对偶或反自对偶)。我们证明了这一要求意味着蒙日 - 安培性质。由于共形结构的半平坦性等同于存在一个非平凡的无弥散拉克斯对,我们的结果解释了这样一个观察结果:在四维及更高维中,所有已知的标量二阶可积无弥散PDEs都是蒙日 - 安培型的。我们还得到了具有半平坦共形结构的四维蒙日 - 安培方程的一些部分分类结果。

相似文献

1
Second-order PDEs in four dimensions with half-flat conformal structure.具有半平坦共形结构的四维二阶偏微分方程。
Proc Math Phys Eng Sci. 2020 Jan;476(2233):20190642. doi: 10.1098/rspa.2019.0642. Epub 2020 Jan 29.
3
On a class of integrable Hamiltonian equations in 2+1 dimensions.关于一类二维加一维的可积哈密顿方程。
Proc Math Phys Eng Sci. 2021 May 26;477(2249):20210047. doi: 10.1098/rspa.2021.0047.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验