Nishi Mayuko, Miyakawa Kei, Matsunaga Satoko, Khatun Hajera, Yamaoka Yutaro, Watashi Koichi, Sugiyama Masaya, Kimura Hirokazu, Wakita Takaji, Ryo Akihide
Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan.
Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Japan.
Front Cell Dev Biol. 2020 Jan 31;8:26. doi: 10.3389/fcell.2020.00026. eCollection 2020.
The dynamic interplay between virus and host proteins is critical for establishing efficient viral replication and virus-induced pathogenesis. Phosphorylation-dependent prolyl isomerization by Pin1 provides a unique mechanism of molecular switching to control both protein function and stability. We demonstrate here that Pin1 binds and stabilizes hepatitis B virus core protein (HBc) in a phosphorylation-dependent manner, and promotes the efficient viral propagation. Phos-tag gel electrophoresis with various site-directed mutants of HBc revealed that Thr160 and Ser162 residues within the C terminal arginine-rich domain are phosphorylated concomitantly. GST pull-down assay and co-immunoprecipitation analysis demonstrated that Pin1 associated with phosphorylated HBc at the Thr160-Pro and Ser162-Pro motifs. Chemical or genetic inhibition of Pin1 significantly accelerated the rapid degradation of HBc via a lysosome-dependent pathway. Furthermore, we found that the pyruvate dehydrogenase phosphatase catalytic subunit 2 (PDP2) could dephosphorylate HBc at the Pin1-binding sites, thereby suppressing Pin1-mediated HBc stabilization. Our findings reveal an important regulatory mechanism of HBc stability catalyzed by Pin1 and may facilitate the development of new antiviral therapeutics targeting Pin1 function.
病毒与宿主蛋白之间的动态相互作用对于建立有效的病毒复制和病毒诱导的发病机制至关重要。Pin1介导的磷酸化依赖性脯氨酰异构化提供了一种独特的分子开关机制,可控制蛋白质的功能和稳定性。我们在此证明,Pin1以磷酸化依赖性方式结合并稳定乙型肝炎病毒核心蛋白(HBc),并促进病毒的有效传播。对HBc各种定点突变体进行Phos-tag凝胶电泳分析表明,富含精氨酸的C末端结构域中的Thr160和Ser162残基同时被磷酸化。GST下拉实验和免疫共沉淀分析表明,Pin1在Thr160-Pro和Ser162-Pro基序处与磷酸化的HBc结合。化学或基因抑制Pin1可通过溶酶体依赖性途径显著加速HBc的快速降解。此外,我们发现丙酮酸脱氢酶磷酸酶催化亚基2(PDP2)可以使Pin1结合位点处的HBc去磷酸化,从而抑制Pin1介导的HBc稳定。我们的研究结果揭示了Pin1催化的HBc稳定性的重要调控机制,并可能有助于开发针对Pin1功能的新型抗病毒疗法。