Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
Angew Chem Int Ed Engl. 2020 May 25;59(22):8476-8480. doi: 10.1002/anie.202001162. Epub 2020 Mar 20.
Today, we can read human genomes and store digital data robustly in synthetic DNA. Herein, we report a strategy to intertwine these two technologies to enable the secure storage of valuable information in synthetic DNA, protected with personalized keys. We show that genetic short tandem repeats (STRs) contain sufficient entropy to generate strong encryption keys, and that only one technology, DNA sequencing, is required to simultaneously read the key and the data. Using this approach, we experimentally generated 80 bit strong keys from human DNA, and used such a key to encrypt 17 kB of digital information stored in synthetic DNA. Finally, the decrypted information was recovered perfectly from a single massively parallel sequencing run.
如今,我们可以读取人类基因组并在合成 DNA 中稳健地存储数字数据。在此,我们报告了一种策略,将这两种技术结合在一起,以便使用个性化密钥将有价值的信息安全地存储在合成 DNA 中。我们表明,遗传短串联重复(STR)具有足够的熵来生成强大的加密密钥,并且同时读取密钥和数据仅需要一种技术,即 DNA 测序。使用这种方法,我们从人类 DNA 中实际生成了 80 位强密钥,并使用该密钥对存储在合成 DNA 中的 17kB 数字信息进行加密。最后,从单个大规模并行测序运行中完美恢复了解密的信息。