Suppr超能文献

从功能基因组学筛选中鉴定癌症驱动基因。

Identifying cancer driver genes from functional genomics screens.

机构信息

Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India / Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India.

Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.

出版信息

Swiss Med Wkly. 2020 Feb 21;150:w20195. doi: 10.4414/smw.2020.20195. eCollection 2020 Feb 10.

Abstract

With the emerging advances made in genomics and functional genomics approaches, there is a critical and growing unmet need to integrate plural datasets in order to identify driver genes in cancer. An integrative approach, with the convergence of multiple types of genetic evidence, can limit false positives through a posterior filtering strategy and reduce the need for multiple hypothesis testing to identify true cancer vulnerabilities. We performed a pooled shRNA screen against 906 human genes in the oral cancer cell line AW13516 in triplicate. The genes that were depleted in the screen were integrated with copy number alteration and gene expression data and ranked based on ROAST analysis, using an integrative scoring system, DepRanker, to compute a Rank Impact Score (RIS) for each gene. The RIS-based ranking of candidate driver genes was used to identify the putative oncogenes AURKB and TK1 as essential for oral cancer cell proliferation. We validated the findings, showing that shRNA mediated genetic knockdown of TK1 or pharmacological inhibition of AURKB by AZD-1152 HQPA in AW13516 cells could significantly impede their proliferation. Next we analysed alterations in AURKB and TK1 genes in head and neck cancer and their association with prognosis using data on 528 patients obtained from TCGA. Patients harbouring alterations in AURKB and TK1 genes were associated with poor survival. To summarise, we present DepRanker as a simple yet robust package with no third-party dependencies for the identification of potential driver genes from a pooled shRNA functional genomic screen by integrating results from RNAi screens with gene expression and copy number data. Using DepRanker, we identify AURKB and TK1 as potential therapeutic targets in oral cancer. DepRanker is in the public domain and available for download at http://www.actrec.gov.in/pi-webpages/AmitDutt/DepRanker/DepRanker.html.

摘要

随着基因组学和功能基因组学方法的不断发展,整合多个数据集以识别癌症中的驱动基因成为一个迫切需要解决的问题。综合分析多种类型的遗传证据,可以通过后过滤策略限制假阳性,并减少识别真正癌症脆弱性所需的多次假设检验。我们在口腔癌细胞系 AW13516 中重复进行了针对 906 个人类基因的 pooled shRNA 筛选。在筛选中消耗的基因与拷贝数改变和基因表达数据整合,并使用 ROAST 分析根据综合评分系统 DepRanker 对每个基因进行排名,计算 Rank Impact Score (RIS)。基于 RIS 的候选驱动基因排名用于鉴定推定的癌基因 AURKB 和 TK1,它们是口腔癌细胞增殖所必需的。我们验证了这一发现,表明在 AW13516 细胞中,shRNA 介导的 TK1 基因遗传敲低或 AZD-1152 HQPA 对 AURKB 的药理学抑制可以显著阻碍其增殖。接下来,我们分析了头颈癌中 AURKB 和 TK1 基因的改变及其与预后的关系,使用了从 TCGA 获得的 528 名患者的数据。携带 AURKB 和 TK1 基因改变的患者与不良预后相关。总之,我们提出了 DepRanker,这是一个简单而强大的软件包,没有第三方依赖,用于从 RNAi 筛选结果与基因表达和拷贝数数据的整合中识别 pooled shRNA 功能基因组筛选中的潜在驱动基因。使用 DepRanker,我们鉴定了 AURKB 和 TK1 作为口腔癌的潜在治疗靶点。DepRanker 是开源的,可以从 http://www.actrec.gov.in/pi-webpages/AmitDutt/DepRanker/DepRanker.html 下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验