Tan Chen, Lee Michelle C, Arshadi Mohammad, Azizi Morteza, Abbaspourrad Alireza
Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA.
Angew Chem Int Ed Engl. 2020 Jun 8;59(24):9506-9513. doi: 10.1002/anie.201916211. Epub 2020 Mar 31.
Processing metal-organic frameworks (MOFs) into hierarchical macroscopic materials can greatly extend their practical applications. However, current strategies suffer from severe aggregation of MOFs and limited tuning of the hierarchical porous network. Now, a strategy is presented that can simultaneously tune the MOF loading, composition, spatial distribution, and confinement within various bio-originated macroscopic supports, as well as control the accessibility, robustness, and formability of the support itself. This method enables the good dispersion of individual MOF nanoparticles on a spiderweb-like network within each macrovoid even at high loadings (up to 86 wt %), ensuring the foam pores are highly accessible for excellent adsorption and catalytic capacity. Additionally, this approach allows the direct pre-incorporation of other functional components into the framework. This strategy provides precise control over the properties of both the hierarchical support and MOF.
将金属有机框架材料(MOFs)加工成多级宏观材料可以极大地扩展其实际应用。然而,目前的策略存在MOFs严重聚集以及多级多孔网络调节受限的问题。现在,提出了一种策略,该策略可以同时调节MOF的负载量、组成、空间分布以及在各种生物源宏观载体中的受限情况,还能控制载体本身的可及性、稳定性和可成型性。这种方法能够使单个MOF纳米颗粒在每个大孔隙内的蛛网状网络上良好分散,即使在高负载量(高达86 wt%)下也是如此,确保泡沫孔隙具有高度可及性,从而具备出色的吸附和催化能力。此外,这种方法允许将其他功能组分直接预掺入框架中。该策略可对多级载体和MOF的性能进行精确控制。