Suppr超能文献

完整人类细胞和细胞裂解物中具有电子去耦的动态核极化

Dynamic Nuclear Polarization with Electron Decoupling in Intact Human Cells and Cell Lysates.

作者信息

Judge Patrick T, Sesti Erika L, Price Lauren E, Albert Brice J, Alaniva Nicholas, Saliba Edward P, Halbritter Thomas, Sigurdsson Snorri Th, Kyei George B, Barnes Alexander B

机构信息

Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Department of Biochemistry, Biophysics & Structural Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States.

出版信息

J Phys Chem B. 2020 Mar 26;124(12):2323-2330. doi: 10.1021/acs.jpcb.9b10494. Epub 2020 Mar 12.

Abstract

Dynamic nuclear polarization (DNP) is used to improve the inherently poor sensitivity of nuclear magnetic resonance spectroscopy by transferring spin polarization from electrons to nuclei. However, DNP radicals within the sample can have detrimental effects on nuclear spins close to the polarizing agent. Chirped microwave pulses and electron decoupling (eDEC) attenuate these effects in model systems, but this approach is yet to be applied to intact cells or cellular lysates. Herein, we demonstrate for the first time exceptionally fast H T times of just 200 and 300 ms at 90 and 6 K, respectively, using a newly synthesized methylated trityl radical within intact human cells. We further demonstrate that eDEC can also be applied to intact human cells and human and bacterial cell lysates. We investigate eDEC efficiency at different temperatures, with different solvents, and with two trityl radical derivatives. At 90 K, eDEC yields a C signal intensity increase of 8% in intact human cells and 10% in human and bacterial cell lysates. At 6 K, eDEC provides larger intensity increases of 15 and 39% in intact human cells and cell lysates, respectively. Combining the manipulation of electron spins with frequency-chirped pulses and sample temperatures approaching absolute zero is a promising avenue for executing rapid, high-sensitivity magic-angle spinning DNP in complex cellular environments.

摘要

动态核极化(DNP)通过将自旋极化从电子转移到原子核来提高核磁共振光谱固有的低灵敏度。然而,样品中的DNP自由基会对靠近极化剂的核自旋产生有害影响。啁啾微波脉冲和电子去耦(eDEC)在模型系统中减弱了这些影响,但这种方法尚未应用于完整细胞或细胞裂解物。在此,我们首次证明,在完整的人类细胞中使用新合成的甲基化三苯甲基自由基,在90 K和6 K时,H T时间分别异常快速地仅为200和300毫秒。我们进一步证明,eDEC也可应用于完整的人类细胞以及人类和细菌细胞裂解物。我们研究了在不同温度、不同溶剂以及两种三苯甲基自由基衍生物条件下的eDEC效率。在90 K时,eDEC使完整人类细胞中的C信号强度增加8%,在人类和细菌细胞裂解物中增加10%。在6 K时,eDEC分别使完整人类细胞和细胞裂解物中的强度增加15%和39%。将电子自旋的操控与频率啁啾脉冲以及接近绝对零度的样品温度相结合,是在复杂细胞环境中执行快速、高灵敏度魔角旋转DNP的一条有前景的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验