Suppr超能文献

快照判断进入数字时代:关于食品券的报道随着时间、出版类型和政治倾向的不同而有很大差异。

SNAP judgments into the digital age: Reporting on food stamps varies significantly with time, publication type, and political leaning.

机构信息

Stanford Prevention Research Center, Department of Medicine, Stanford University, Palo Alto, California, United States of America.

Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, United States of America.

出版信息

PLoS One. 2020 Feb 21;15(2):e0229180. doi: 10.1371/journal.pone.0229180. eCollection 2020.

Abstract

The Supplemental Nutrition Assistance Program (SNAP) is the second-largest and most contentious public assistance program administered by the United States government. The media forums where SNAP discourse occurs have changed with the advent of social and web-based media. We used machine learning techniques to characterize media coverage of SNAP over time (1990-2017), between outlets with national readership and those with narrower scopes, and, for a subset of web-based media, by the outlet's political leaning. We applied structural topic models, a machine learning methodology that categorizes and summarizes large bodies of text that have document-level covariates or metadata, to a corpus of print media retrieved via LexisNexis (n = 76,634). For comparison, we complied a separate corpus via web-scrape algorithm of the Google News API (2012-2017), and assigned political alignment metadata to a subset documents according to a recent study of partisanship on social media. A similar procedure was used on a subset of the print media documents that could be matched to the same alignment index. Using linear regression models, we found some, but not all, topics to vary significantly with time, between large and small media outlets, and by political leaning. Our findings offer insights into the polarized and partisan nature of a major social welfare program in the United States, and the possible effects of new media environments on the state of this discourse.

摘要

补充营养援助计划(SNAP)是美国政府管理的第二大、最具争议性的公共援助计划。随着社交媒体和网络媒体的出现,SNAP 话语的媒体论坛也发生了变化。我们使用机器学习技术来描述 SNAP 随时间的媒体报道(1990-2017 年),包括具有全国读者群的媒体和范围较窄的媒体,以及网络媒体的一部分,按媒体的政治倾向进行分类。我们应用结构主题模型(一种将具有文档级协变量或元数据的大量文本进行分类和总结的机器学习方法)来分析通过 LexisNexis 检索到的印刷媒体语料库(n = 76634)。为了进行比较,我们根据最近对社交媒体党派性的研究,通过网络爬虫算法编制了一个独立的 Google News API 语料库(2012-2017 年),并为一部分文档分配了政治倾向元数据。对可以与相同对齐索引匹配的印刷媒体文档的子集使用了类似的程序。使用线性回归模型,我们发现了一些但不是所有主题随着时间的推移、在大型和小型媒体之间以及政治倾向的变化而显著变化。我们的研究结果为了解美国一项主要社会福利计划的两极分化和党派性质以及新媒体环境对这种话语状态的可能影响提供了一些启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/248b/7034891/ff4ee579cc9f/pone.0229180.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验