Sanofi R&D Immunology and Inflammation Therapeutic Area, Type 1/17 Inflammation and Arthritis Cluster, Industriepark Hoechst, Frankfurt am Main, Germany.
Wiley Interdiscip Rev Syst Biol Med. 2020 Jul;12(4):e1483. doi: 10.1002/wsbm.1483. Epub 2020 Feb 21.
Knowledge about metabolism of immune cells increased almost exponentially during the last two decades and thereby created the new area immunometabolism. Increased glucose uptake and glycolysis were identified as one of the major drivers in immune cells for rapid adaptation to changes in the microenvironment or external stimuli. These metabolic switches are crucial to generate macromolecules for immune cell proliferation and activation. Glucose transporter 1 (GLUT1), a ubiquitously expressed glucose transporter, is strongly upregulated after innate and adaptive immune cell activation. Deletion or inhibition of GLUT1 blocked T cell proliferation and effector function, antibody production from B cells and reduced inflammatory responses in macrophages. Increased glucose uptake and GLUT1 expression are not only observed in proinflammatory conditions, but also in murine models of autoimmunity as well as in human patients. Rheumatoid arthritis (RA), the most common autoimmune disease, is characterized by infiltration of immune cells, hyperproliferation of fibroblast-like synoviocytes, and destruction of cartilage and bone. These processes create a hypoxic microenvironment in the synovium. Moreover, synovial samples including fibroblast-like synoviocytes from RA patients showed increased lactate level and upregulate GLUT1. Similar upregulation of GLUT1 is observed in systemic lupus erythematosus and psoriasis patients as well as in murine autoimmune models. Inhibition of GLUT1 using either T cell specific knockouts or small molecule GLUT1/glycolysis inhibitors improved phenotypes of different murine autoimmune disease models like arthritis, lupus, and psoriasis. Thereby the therapeutic potential of immunometabolism and especially interference with glycolysis was proven. This article is categorized under: Biological Mechanisms > Metabolism Translational, Genomic, and Systems Medicine > Translational Medicine Physiology > Mammalian Physiology in Health and Disease.
过去二十年中,人们对免疫细胞代谢的认识呈指数级增长,从而形成了新的领域——免疫代谢。研究发现,免疫细胞快速适应微环境或外部刺激的变化时,葡萄糖摄取和糖酵解增加是主要驱动力之一。这些代谢开关对于产生用于免疫细胞增殖和激活的大分子物质至关重要。葡萄糖转运蛋白 1(GLUT1)是一种广泛表达的葡萄糖转运蛋白,在先天和适应性免疫细胞激活后强烈上调。GLUT1 的缺失或抑制会阻断 T 细胞增殖和效应功能、B 细胞产生抗体以及巨噬细胞中的炎症反应。不仅在促炎条件下观察到葡萄糖摄取增加和 GLUT1 表达上调,在自身免疫的小鼠模型以及人类患者中也是如此。类风湿关节炎(RA)是最常见的自身免疫性疾病,其特征是免疫细胞浸润、成纤维样滑膜细胞过度增殖以及软骨和骨破坏。这些过程在滑膜中产生了缺氧的微环境。此外,来自 RA 患者的滑膜样本(包括成纤维样滑膜细胞)显示出乳酸水平升高,并上调 GLUT1。在系统性红斑狼疮和银屑病患者以及自身免疫性小鼠模型中也观察到类似的 GLUT1 上调。使用 T 细胞特异性敲除或小分子 GLUT1/糖酵解抑制剂抑制 GLUT1 可改善不同的自身免疫性疾病模型(如关节炎、狼疮和银屑病)的表型。因此,免疫代谢的治疗潜力,特别是对糖酵解的干预作用已得到证实。本文属于以下分类: 生物机制 > 代谢 转化、基因组和系统医学 > 转化医学 生理学 > 哺乳动物生理学中的健康和疾病。