Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, P. R. China.
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
Environ Sci Technol. 2020 Apr 21;54(8):4810-4819. doi: 10.1021/acs.est.9b06141. Epub 2020 Mar 4.
While it was recently reported that the conduction band of iron minerals can mediate electron transfer between Fe(II) and different Fe(III) lattice sites during Fe(II)-catalyzed mineral transformation, it is unclear whether such a conduction band mediation pathway occurs in the microbial Fe(II) oxidation system under dark and anoxic subsurface conditions. Here, using cytochrome (-Cyts) as a model protein of microbial Fe(II) oxidation, the kinetics and thermodynamics of -Cyts reduction by Fe(II) were studied. The results showed that the rates of -Cyts reduction were greatly enhanced in the presence of the semiconducting mineral hematite (Hem, α-FeO). The electrochemical experiments separating Fe(II) and -Cyts demonstrated that electrons from Fe(II) to the electrode or from the electrode to -Cyts could directly penetrate hematite, resulting in enhanced current. Independent photochemical and photoluminescence experiments indicated that Cyts could be directly reduced by the conduction band electrons of hematite which were generated under light illumination. In -Cyts+Fe(II)+Hem, the redox potential of Fe(II)-Hem was shifted from -0.15 to -0.18 V and that of -Cyts+Hem changed slightly from -0.05 to -0.04 V. For the bulk hematite, Mott-Schottky plots illustrated that the flat band was shifted negatively and positively in the presence of Fe(II) and oxidized -Cyts, respectively, and the surface electron/charge density was higher in the presence of Fe(II)/-Cyts. As a consequence, the redox gradients from adsorbed Fe(II) to adsorbed -Cyts allow electron transfer across the conduction band of hematite and facilitate -Cyts reduction. This mechanistic study on conduction band-mediating electron transfer could help interpret the role of semiconducting minerals in the microbial Fe(II) oxidation process under dark anoxic conditions.
虽然最近有报道称,在 Fe(II) 催化的矿物转化过程中,铁矿物的导带可以介导 Fe(II) 和不同的 Fe(III) 晶格位之间的电子转移,但在黑暗缺氧的地下条件下,微生物 Fe(II)氧化系统中是否存在这种导带介导途径尚不清楚。在这里,使用细胞色素 c(-Cyts)作为微生物 Fe(II)氧化的模型蛋白,研究了 -Cyts 被 Fe(II)还原的动力学和热力学。结果表明,在半导体赤铁矿(Hem, α-FeO)存在的情况下,-Cyts 的还原速率大大提高。将 Fe(II)和 -Cyts 分离的电化学实验表明,来自 Fe(II)的电子可以直接穿透赤铁矿到达电极,或者从电极到 -Cyts,从而产生增强的电流。独立的光化学和光致发光实验表明,赤铁矿导带中的电子可以在光照下直接还原 Cyts。在 -Cyts+Fe(II)+Hem 中,Fe(II)-Hem 的氧化还原电位从-0.15 到-0.18 V 发生了移动,-Cyts+Hem 的氧化还原电位从-0.05 到-0.04 V 略有变化。对于块状赤铁矿,Mott-Schottky 图表明,在存在 Fe(II)和氧化的 -Cyts 的情况下,平带分别向负向和正向移动,并且在存在 Fe(II)/-Cyts 的情况下,表面电子/电荷密度更高。因此,从吸附的 Fe(II)到吸附的 -Cyts 的氧化还原梯度允许电子在赤铁矿的导带中转移,并促进 -Cyts 的还原。这项关于导带介导电子转移的机制研究可以帮助解释在黑暗缺氧条件下,半导体矿物在微生物 Fe(II)氧化过程中的作用。